SNPMiner Trials by Shray Alag


SNPMiner SNPMiner Trials (Home Page)


Report for Mutation P12A

Developed by Shray Alag, 2020.
SNP Clinical Trial Gene

There are 6 clinical trials

Clinical Trials


1 Gene-diet Interactions

Interactions between genes and environment, i.e. our inherited responses to environmental changes, may be crucial in the development of the common diseases. The investigators were the first to identify PPARG gene as risk gene for type 2 diabetes. The role of the Pro12Ala polymorphism in diabetes risk has also been verified in meta-analysis. However, this effect on seems to depend on intervention and age. In this study the effects of diets high with saturated fatty acids (SAFA) and polyunsaturated fatty acids (PUFA) are compared in subjects carrying either Pro12Pro or Ala12Ala genotype of the PPARG gene. Aim of the study: To test if subjects with Pro12Pro and Ala12Ala genotypes respond differentially to a diet supplemented with high saturated (SAFA) or polyunsaturated fat (PUFA). Hypotheses: 1. Specific: Subjects with the Ala12Ala genotype will be more sensitive to dietary modification, and therefore respond more favorably to PUFA diet 2. More general: Dietary instructions individually tailored according to the genotype would allow better treatment of obesity and diabetes

NCT01274091 Insulin Sensitivity Other: PUFA-diet Other: SAFA-diet
MeSH:Insulin Resistance Hypersensitivity
HPO:Allergy Insulin resistance

The role of the Pro12Ala polymorphism in diabetes risk has also been verified in meta-analysis. --- Pro12Ala ---

Inclusion Criteria: - BMI >20kg/m2 <29kg/m2 - Pro12Pro and Ala12Ala genotypes of PPARG Pro12Ala polymorphism - participation to METSIM-study (METabolic Syndrome in Men, currently >10000 men included from the population living in Kuopio, principal investigator Markku Laakso) - normoglycemia Exclusion Criteria: - type 2 diabetes - other chronic diseases Inclusion Criteria: - BMI >20kg/m2 <29kg/m2 - Pro12Pro and Ala12Ala genotypes of PPARG Pro12Ala polymorphism - participation to METSIM-study (METabolic Syndrome in Men, currently >10000 men included from the population living in Kuopio, principal investigator Markku Laakso) - normoglycemia Exclusion Criteria: - type 2 diabetes - other chronic diseases Insulin Sensitivity Insulin Resistance Hypersensitivity Obesity and type 2 diabetes are increasing in all western countries, including Finland. --- Pro12Ala ---

Inclusion Criteria: - BMI >20kg/m2 <29kg/m2 - Pro12Pro and Ala12Ala genotypes of PPARG Pro12Ala polymorphism - participation to METSIM-study (METabolic Syndrome in Men, currently >10000 men included from the population living in Kuopio, principal investigator Markku Laakso) - normoglycemia Exclusion Criteria: - type 2 diabetes - other chronic diseases Inclusion Criteria: - BMI >20kg/m2 <29kg/m2 - Pro12Pro and Ala12Ala genotypes of PPARG Pro12Ala polymorphism - participation to METSIM-study (METabolic Syndrome in Men, currently >10000 men included from the population living in Kuopio, principal investigator Markku Laakso) - normoglycemia Exclusion Criteria: - type 2 diabetes - other chronic diseases Insulin Sensitivity Insulin Resistance Hypersensitivity Obesity and type 2 diabetes are increasing in all western countries, including Finland. --- Pro12Ala --- --- Pro12Ala ---

The role of the Pro12Ala polymorphism in diabetes risk has also been verified in meta-analysis. --- Pro12Ala ---

Based on these findings the investigators created in collaboration with Johan Auwerx an Pro12Ala animal model that demonstrated a differential effect of dietary fat composition depending on the genotype. --- Pro12Ala ---

However, an important conclusive proof that subjects selected based on their Pro12Ala genotype would respond differently to specifically tailored diet modification is still needed. --- Pro12Ala ---

Primary Outcomes

Description: insulin sensitivity measured by oral glucose tolerance test at the beginning of the first, randomised diet

Measure: insulin sensitivity

Time: week 0

Description: insulin sensitivty measured by oral glucose tolerance test after the first diet

Measure: insulin sensitivity

Time: week 8

Description: Insulin sensitivity measured by oral glucose tolerance test in the beginning of the second, randomised diet

Measure: insulin sensitivity

Time: week 10

Description: insulin sensitivity measured by oral glucose tolerance test after the second diet

Measure: insulin sensitivity

Time: week 18

Secondary Outcomes

Measure: peripheral blood mononuclear cell gene expression

Time: week 8

Measure: peripheral blood mononuclear cell gene expression

Time: week 18

Description: serum lipids, including serum lipidomics and fatty acid composition

Measure: serum lipids

Time: week 8

Description: serum lipids, including serum lipidomics and fatty acid composition

Measure: serum lipids

Time: week 18

Description: inflammation measured as serum cytokines and adipose tissue inflammation

Measure: inflammation

Time: week 8

Description: inflammation measured as serum cytokines and adipose tissue inflammation

Measure: inflammation

Time: week 18

Description: energy expenditure and the rates of substrate oxidation

Measure: energy expenditure

Time: week 8

Description: energy expenditure and the rates of substrate oxidation

Measure: energy expenditure

Time: week 18

Measure: insulin secretion

Time: week 8

Measure: insulin secretion

Time: week 18

Measure: adipose tissue gene expression

Time: week 8

Measure: adipose tissue gene expression

Time: week 18

2 Modulation of Insulin Secretion and Insulin Sensitivity in Bangladeshi Type 2 Diabetic Subjects by an Insulin Sensitizer Pioglitazone and T2DM Association With PPARG Gene Polymorphism.

- The present study was undertaken to assess the efficacy and safety of two different insulin sensitizers (namely Pioglitazone and Metformin) among subjects with type 2 diabetes mellitus (T2DM) in Bangladesh. - A prospective, double-blind, single group, 'within-subject' designed clinical trial of 77 diagnosed T2DM patients out of 130 patients with glycosylated haemoglobin (HbA1c) ≥7.2±1.5%, aged 46±6.4 years and registered for diabetes treatment in Bangladesh Institute of Research and Rehabilitation in Diabetes Endocrine and Metabolic Disorders (BIRDEM) was carried out. - The study was conducted between November 2008 and September 2010. - Baseline data, included case history of the patients,anthropometric measurement, biomedical parameters psychosocial factors, were collected from each subject and then enrolled to receive treatment with 001 drug once daily for three months, then the patients were left for wash out with metformin 850mg once daily for one month; then they received 002 drug once daily for further three months. - Dietary chart was remained as before. - DNA was isolated by Chelex method using the primers and control DNA,restriction Digestion Enzyme Endonuclease Hae 111 for genotyping PPARγ-(Peroxisome Proliferator Activated Receptor gamma)Pro12Pro - (Proline12Proline)/Pro12Ala-(Proline12 Alanine))/Ala12Ala-(Alanine12Alanine). - The blinded drugs were decoded after analyzing results, 001 tablet was pioglitazone (30 mg once daily) and 002 tablets was metformin (850mg once daily). Bio-medical outcomes were measured to assess the efficacy of both the drugs each month. After finishing the treatment period the effects of two drugs were compared using SPSS.And the association between the pioglitazone drug effects and genetic polymorphism was also assessed. - The metformin effects was assessed also using the response rate of HbA1c <7.0% after 3 months treatment to the patients.

NCT01589445 Type 2 Diabetes Mellitus Drug: Pioglitazone hydrochloride Drug: Metformin hydrochloride
MeSH:Diabetes Mellitus Diabetes Mellitus, Type 2
HPO:Diabetes mellitus Type II diabetes mellitus

- DNA was isolated by Chelex method using the primers and control DNA,restriction Digestion Enzyme Endonuclease Hae 111 for genotyping PPARγ-(Peroxisome Proliferator Activated Receptor gamma)Pro12Pro - (Proline12Proline)/Pro12Ala-(Proline12 Alanine))/Ala12Ala-(Alanine12Alanine). - The blinded drugs were decoded after analyzing results, 001 tablet was pioglitazone (30 mg once daily) and 002 tablets was metformin (850mg once daily). --- Pro12Ala ---

We used a published document to select the primers for genotyping PPARγ Pro12Ala/Pro12Pro. --- Pro12Ala ---

The primers for the Pro12Ala SNP genotype, we amplified exon B using the reverse primer 5' CTG GAA GAC AAA CTA CAA GAG 3' and the forward primer 5' ACT CTG GGA GAT TCT CCT ATT GGC 3'. --- Pro12Ala ---

III.Control DNA: Professor Colin Palmer Laboratory, Biomedical Research Institute ,University of Dundee Medical School, University of Dundee, Scotland, UK sent six control samples of 3 types control DNA genotyped for PPARG SNP rs 1801282 (Pro12Ala). --- Pro12Ala ---

5) List of Abbreviations AEs Adverse Events ALT Alanine aminotransferase BMI Body Mass Index BMRC Bangladesh Medical Research Council BIRDEM Bangladesh Institute of Research and Rehabilitation in Diabetes,Endocrine and Metabolic Disorder BP Blood Pressure DNA Deoxynucleic Acid DBP Diastolic Blood Pressure DM Diabetes Mellitus EASD European Association for the Study of Diabetes EDTA Ethylene Diamine Tetra Acetic acid ELISA Enzyme Linked Immunosorbent Assay FBG/FSG Fasting Blood Glucose/Fasting Serum Glucose FSI Fasting Serum Insulin 2hBG 2 hours Blood Glucose HbA1c Glycosylated Haemoglobin HOMA percent B Homeostasis Model Assessment percentage of beta cell function HOMA percent S Homeostasis Model Assessment percentage of sensitivity HOMA IR Homeostasis Model Assessment Insulin Resistance HDL-C High Density Lipid Cholesterol IU/L International Unit/Litre LDL-C Low Density Lipid Cholesterol ml millilitre mm millimetre mg/dl milligram/ decilitre MLR Multiple Logistic Regression OPD Outdoor Patient Department OMIM Online Mendelian Inheritance in Man OR Odds Ratio PPARγ Peroxisome Proliferator Activated Receptor gamma Pro12Pro Proline12Proline Pro12Ala Proline 12 Alanine Ala12Ala Alanine12Alanine PCR Polymerase Chain Reaction QUICKI Quantitative Insulin sensitivity Check Index SD Standard Deviation SPSS Statistical Package for Social Science SBP Systolic Blood Pressure TC Total Cholesterol TG Triglyceride T2DM Type 2 Diabetes Mellitus TZD Thiazolidinedione µl Microliter WHO World Health Organization --- Pro12Ala ---

Primary Outcomes

Description: Response rate was defined by ≥10% decrease of FSG or/and ≥1% decrease of HbA1c from the baseline values after 3 months treatment.48 responded to pioglitazone and 32 responded to metformin.

Measure: Comparison of Changes in Fasting Serum Glucose (FSG)With Pioglitazone and Metformin

Time: 3 months for each drug

Description: Response rate was defined by ≥10% decrease of FSG or/and ≥1% decrease of HbA1c from the baseline values after 3 months treatment.48 responded to pioglitazone and 32 responded to metformin.

Measure: Comparison of Changes in Glycosylated Hemoglobin (HbA1c)With Pioglitazone and Metformin

Time: 3 months for each drug

Description: Response rate was defined by ≥10% decrease of FSG or/and ≥1% decrease of HbA1c from the baseline values after 3 months treatment.48 responded to pioglitazone and 32 responded to metformin. Analysis 1: Homeostasis Model Assessment Insulin Resistance(HOMA IR) Analysis 2: Quantitative Insulin sensitivity Check Index(QUICKI)

Measure: Comparison of Changes in Insulin Levels (HOMA IR,QUICKI) With Pioglitazone and Metformin

Time: 3 months for each drug

Description: Response rate was defined by ≥10% decrease of FSG or/and ≥1% decrease of HbA1c from the baseline values after 3 months treatment.48 responded to pioglitazone and 32 responded to metformin. Analysis 1: Homeostatic Model Assessment of Beta cell function(HOMA percent B) Analysis 2: Homeostatic Model Assessment of Insulin Sensitivity (Homa percent S)

Measure: Comparison of Changes in HOMA Percent B and HOMA Percent S With Pioglitazone and Metformin

Time: 3 months for each drug

Description: Response rate was defined by ≥10% decrease of FSG or/and ≥1% decrease of HbA1c from the baseline values after 3 months treatment.48 responded to pioglitazone and 32 responded to metformin.

Measure: Comparison of Changes in Fasting Serum Insulin (FSI)With Pioglitazone and Metformin

Time: 3 months for each drug

Secondary Outcomes

Description: Response rate was defined by ≥10% decrease of FSG or/and ≥1% decrease of HbA1c from the baseline values after 3 months treatment.48 responded to pioglitazone and 32 responded to metformin. Analysis 1:Total Cholesterol(TC) Analysis 2:Triglyceride(TG) Analysis 3:High Density Lipoprotein(HDL) Analysis 4:Low Density Lipoprotein(LDL)

Measure: Comparison of Changes in Lipid Profiles With Pioglitazone and Metformin

Time: 3 months for each drug

3 Hypocaloric Diet With or Without Microencapsulated Fish Oil or Conjugated Linoleic Acid on Oxidative Stress and Cardiovascular Risk Factors in Women With Metabolic Syndrome Genotyped for Polymorphisms in the Genes PPAR Gamma 2 (Pro12Ala) and Adiponectin (G276T)

Our aim was to assess the effects of a hypocaloric diet, including diet fruit jelly with microencapsulated fish oil or conjugated linoleic acid or placebo, on anthropometry, body composition, insulin resistance and lipid profile in women with metabolic syndrome and genotype Pro12Pro in the PPAR gamma 2 gene.

NCT02183922 Insulin Resistance Oxidative Stress Lipid Profile Blood Pressure Anthropometric Measure Dietary Supplement: microencapsulated conjugated linoleic acid Dietary Supplement: microencapsulated fish oil Dietary Supplement: light fruit jam
MeSH:Metabolic Syndrome Insulin Resistance
HPO:Insulin resistance

Hypocaloric Diet With or Without Microencapsulated Fish Oil or Conjugated Linoleic Acid on Oxidative Stress and Cardiovascular Risk Factors in Women With Metabolic Syndrome Genotyped for Polymorphisms in the Genes PPAR Gamma 2 (Pro12Ala) and Adiponectin (G276T). --- Pro12Ala ---

Primary Outcomes

Description: Plasma malondialdehyde levels

Measure: Oxidative stress biomarker

Time: Change from baseline at 12 weeks

Secondary Outcomes

Description: Homeostatic Model Assessment-Insulin Resistance index, adiponectin, glucose and insulin levels

Measure: Insulin resistance

Time: Change from baseline at 12 weeks

Description: Total cholesterol, LDL-cholesterol, VLDL-cholesterol, HDL-cholesterol and triglycerides serum levels and EPA, DHA and total conjugated linoleic acid plasma levels

Measure: Lipid profile

Time: Change from baseline at 12 weeks

Description: Body weight, body mass index and waist circumference

Measure: Anthropometric measures

Time: Change from baseline at 12 weeks

Description: Fat-free mass and fat mass

Measure: Body composition measures

Time: Change from baseline at 12 weeks

Description: Systolic blood pressure and diastolic blood pressure

Measure: Blood pressure

Time: Change from baseline at 12 weeks

4 Alcohol-related Breast Cancer in Postmenopausal Women - Effect of PPARG2pro12ala Polymorphism on Female Sex-hormone Levels and Interaction With Alcohol Consumption and NSAID Usage

Postmenopausal women, stratified by a peroxisome proliferator-activated receptor gamma-2 (PPARG) polymorphism, were given the following treatments in a random order with a 5w wash-out period: a 400mg ibuprofen tablet or a placebo tablet; both treatments were followed after 30min by a single acute dose of 0.4g alcohol per kg bw. Serum estrogen levels were measured before and at three timepoints after alcohol intake. It is hypothesized that the acute decrease in estrogen sulphate and other markers of estrogens after alcohol intake is modulated by ibuprofen and by PPARG genotype.

NCT02463383 Breast Cancer Drug: Ibuprofen Tab 400 MG Drug: Placebo tab
MeSH:Breast Neoplasms
HPO:Breast carcinoma Neoplasm of the breast

cholesterol lowering medicine); 7. being allergic to alcohol and/or Ibuprofen 8. smoking Breast Cancer Breast Neoplasms In a pilot human intervention trial we aimed to determine the effect of the PPARG Pro12Ala polymorphism and the PPARγ stimulator, Ibuprofen, on sex-hormone levels following alcohol intake in postmenopausal women. --- Pro12Ala ---

Seven women with PPARG Pro12Ala and 18 PPARG wildtype women were included.The study was performed as a randomised, double-blinded, placebo controlled 2x24 h crossover study. --- Pro12Ala ---

Primary Outcomes

Description: Plasma estrone sulfate concentration after acute ethanol intake by Ibuprofen intake and/or PPARG genotype

Measure: Serum estrone sulphate (pmol/l)

Time: from 40 min before to 90 min after alcohol consumption

Secondary Outcomes

Description: Plasma estrone decrease after acute ethanol intake by ibuprofen intake and/or PPARG genotype

Measure: Serum estrone (pmol/l)

Time: from 40 min before to 90 min after alcohol consumption

Description: Plasma SHBG concentration after acute ethanol ingestion by ibuprofen intake and/or PPARG genotype

Measure: Serum SHBG (nmol/l)

Time: from 40 min before to 90 min after alcohol consumption

Description: Plasma ethanol concentration after acute ethanol ingestion

Measure: Serum ethanol (g/l)

Time: from 40 min before to 90 min after alcohol consumption

Description: The plasma metabolome profile by time after alcohol intake

Measure: Serum metabolomics (relative metabolite intensity)

Time: from 40 min before to 24h after alcohol intake

Description: The urine metabolome profile by time after alcohol intake

Measure: Urine metabolomics (relative metabolite intensity)

Time: from 40 min before to 24h after alcohol intake

5 Effect of Nutritional Intervention and Olive Oil in Severe Obesity: Randomized Controlled Trial

Obesity is a worldwide epidemic with increasing prevalence, specially severe obesity (Body Mass Index (BMI) ≥ 35 kg/m2). It is a multifactorial disease that involves genetic and environmental factors that lead to increased mortality from cardiovascular disease, diabetes, cancer, among others and impairs life quality. Most research on severe obesity focuses on surgical alternatives and their results, thus this clinical trial aims to evaluate the effect of a non-pharmacological approach based on nutritional intervention and supplementation with a functional food, the olive oil. It will analyze the effectiveness of interventions on: weight loss, improvements on body composition and inflammatory profile (TNF-alfa, interleucins 1, 6 and 10, adiponectin), insulin resistance and serum lipids control, changing eating habits and physical activity practice, modification on bone mineral density and sarcopenia, and reduction of cardiovascular risk and other diseases. Also, it will be investigated the influence of polymorphisms (Pro12Ala of PPAR-γ gene, -174G>C of IL6 gene e Trp64Arg of ADRB3 gene) on nutritional intervention effectiveness with and without olive oil. This research looks for improving severely obese patient's care and contributing to effective results by reducing costs and risk treatment. The investigators believe that this informations will contribute significantly to the scientific field, expanding the knowledge about severe obesity.

NCT02463435 Severe Obesity Behavioral: Nutritional intervention Other: Nutritional intervention plus olive oil Dietary Supplement: Olive oil
MeSH:Obesity Obesity, Morbid
HPO:Obesity

Also, it will be investigated the influence of polymorphisms (Pro12Ala of PPAR-γ gene, -174G>C of IL6 gene e Trp64Arg of ADRB3 gene) on nutritional intervention effectiveness with and without olive oil. --- Pro12Ala ---

Polymorphism Pro12Ala of Peroxisome Proliferator-Activated Receptor Alfa (PPAR-alfa). --- Pro12Ala ---

Primary Outcomes

Description: Measurements of weight, arm circumference and Body Mass Index (BMI) will be evaluated to assess anthropometric change.

Measure: Anthropometric measurements change

Time: Baseline, week 12

Description: Body fat mass (BFM), body fat percentage (%BF) and body mass density (BMD) will be evaluated to assess body composition change. BFM and %BF will be assessed using multifrequency bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA) and BMD will be assessed using DXA.

Measure: Body composition change

Time: Baseline, week 12

Secondary Outcomes

Description: TNF-alfa, interleucin 6 (IL6), IL1, IL10, adiponectin, C-reactive protein (CRP)

Measure: Change in inflammation parameters

Time: Baseline, week 12

Description: Lipid profile (total cholesterol, LDL-c, HDL-c, VLDL-c), insulin resistance (HOMA-IR, glycated hemoglobin), fasting glycaemia, hemogram

Measure: Change in metabolic parameters

Time: Baseline, week 12

Description: Creatinine, urea and uric acid

Measure: Change in kidney function

Time: Baseline, week 12

Description: AST and ALT

Measure: Change in liver function

Time: Baseline, week 12

Description: TSH, T4 and parathyroid hormone

Measure: Change in thyroid function

Time: Baseline, week 12

Description: Vitamin D, vitamin B12 and folic acid

Measure: Change in vitamins

Time: Baseline, week 12

Description: Iron, calcium, sodium, potassium and zinc

Measure: Change in minerals

Time: Baseline, week 12

Measure: Change in cardiovascular risk using Global Risk Score (GRS)

Time: Baseline, week 12

Measure: Change in cardiovascular risk using Framingham Risk Score (FRS)

Time: Baseline, week 12

Measure: Change in cardiovascular risk using heart rate variability (HRV)

Time: Baseline, week 12

Measure: Change in cardiovascular risk using Homocystein level

Time: Baseline, week 12

Description: Difference in responses between intervention groups for anthropometric measurements (weight, arm circumference and body mass index) and body composition variables (body fat mass and body fat percentage) according to this polymorphism

Measure: Polymorphism Pro12Ala of Peroxisome Proliferator-Activated Receptor Alfa (PPAR-alfa)

Time: Baseline, week12

Description: Difference in responses between intervention groups for anthropometric measurements (weight, arm circumference and body mass index) and body composition variables (body fat mass and body fat percentage) according to this polymorphism

Measure: PolymorphismTrp64Arg of Beta-3 Adrenergic Receptor (ADRB3) gene

Time: Baseline, week12

Description: Difference in responses between intervention groups for anthropometric measurements (weight, arm circumference and body mass index) and body composition variables (body fat mass and body fat percentage) according to this polymorphism

Measure: Polymorphism -174G>C of Interleukin 6 (IL6) gene.

Time: Baseline, week12

Measure: Change in physical activity practice using Global Physical Activity Questionnaire

Time: Baseline, week 12

Measure: Change in physical activity practice using accelerometry

Time: Baseline, week 12

Measure: Change in food intake using Food Frequency Questionnaire

Time: Baseline, week 12

Measure: Change in food intake using 24 hour recall

Time: Baseline, week 12

Description: Change in the following variables: bone density using DXA, falls and fractures and sun exposure

Measure: Change in bone health parameters

Time: Baseline, week 12

Measure: Change in obesity sarcopenia using muscle mass (evaluated using DXA)

Time: Baseline, week 12

Measure: Change in obesity sarcopenia using handgrip strength

Time: Baseline, week 12

Measure: Change in sarcopenia using usual gait speed

Time: Baseline, week 12

Description: It will be evaluated through changes in food consumption (food frequency questionnaire)

Measure: Adherence to nutritional intervention

Time: Baseline, week 12

Description: It will be evaluated through attendance to the clinic visits

Measure: Adherence to the health service

Time: Baseline, week 12

Measure: Change in symptoms of anxiety and depression using Hospital Anxiety and Depression Scale

Time: Baseline, week 12

Measure: Change in symptoms of binge eating disorderusing Binge Eating Disorder Scale

Time: Baseline, week 12

Measure: Change in musculoskeletal pain using Visual Analog Scale

Time: Baseline, week 12

Measure: Change in musculoskeletal pain using Nordic Musculoskeletal Questionnaire

Time: Baseline, week 12

6 Influence of Polymorphysms in the Fto and Ppar Gen Genes, Systemic Inflammation and Oxidative Stress in the Magnitude of Weight Loss Induced by Intermittent or Moderate Continuous High Intensity Training Programs

The study focuses on the influence of polymorphism in the FTO genes rs9939609 and PPARᵧ Pro12Ala, oxidative stress and systemic inflammation on changes in body composition and rest metabolism induced by HIIT and continuous aerobic programs in obese or overweight individuals.

NCT03568773 Overweight and Obesity Chronic Disease Other: High-intensity interval training Other: Aerobic exercise moderate intensity Other: Control Group
MeSH:Overweight Weight Loss Chronic Disease
HPO:Decreased body weight Weight loss

Influence of Genetic and Physiological in Weight Loss The study focuses on the influence of polymorphism in the FTO genes rs9939609 and PPARᵧ Pro12Ala, oxidative stress and systemic inflammation on changes in body composition and rest metabolism induced by HIIT and continuous aerobic programs in obese or overweight individuals. --- Pro12Ala ---

Thus, the objective of the study is to analyze the influence of polymorphism in the genes FTO rs9939609 and PPARᵧ Pro12Ala, oxidative stress and systemic inflammation on changes in body composition and rest metabolism induced by continuous and continuous aerobic programs. --- Pro12Ala ---

Primary Outcomes

Description: The procedure used for analysis is done using a Dual Energy Radiological Absortiometry (DEXA) equipment. The measurement of the body fat and fat free mass percentage measure is obtained by means of a full body scan using the LUNAR PRODIGY DF + 14.319 Radiation (Madison, WI) brand device, following manufacturer's protocols. The body mass is evaluated by means of a balance (Sanny®, São Bernardo do Campo - São Paulo, Brazil), with the volunteer barefoot and in orthostatic position using a Toledo scale sensitive to 100 g. The stature is evaluated by a stadiometer with a tape calibrated at 0.1 of the same mark. Waist circumference and other body perimeters are measured with a 0.1 cm Anthropometric Tape (Sanny®, São Bernardo do Campo - São Paulo, Brazil). Weight and height data are used to calculate BMI using the equation adopted by the WHO: BMI = (Weight / (Stature) 2).

Measure: Body Composition. The changes are being evaluated.

Time: Before the intervention protocol and 48 hours immediately after the last exercise session.

Secondary Outcomes

Description: The metabolic rate was measured using a gas spirometry analyzer. After having fasted from 8:00 pm the previous day, the volunteers were referred to the laboratory shortly after the awakening and were invited to remain seated in a thermoneutral environment for 30 minutes. For the next 30 minutes, VO2, VCO2, VE and RER were monitored until variations of no more than 10% occurred when five-minute intervals were compared. Once this steady state was obtained, these variables were recorded for five minutes. The calculation of the resting metabolic rate is done according to Macdonald (1990).

Measure: Metabolic Rate of Rest. The changes are being evaluated.

Time: Before the intervention protocol and 48 hours immediately after the last exercise session.

Description: Collections of 10 ml of blood from the antecubital vein will be performed early in the morning, with fasting from 10 to 12 hours. The collections will be done 24 hours before, in the 6th week and after the intervention period. They will remain seated for 10 minutes for subsequent collection. Five milliliters of blood will be placed in EDTA-containing test tubes, protected from light and gently homogenized by inversion. The other 5ml will be placed in tubes without anticoagulants. They will then be centrifuged at 3,000 rpm for 10 min. The plasma or serum will be separated, placed in eppendorf tubes and refrigerated at -20 ° C until analysis. All analyzes will be carried out using a commercial kit of the Labtest brand (Minas Gerais-Brazil). The analyzes will be carried out on serum samples using commercial Labtest kits (Minas Gerais, Brazil), following the manufacturer's recommendations and on a Labmax 240 premium automatic analyzer (Lagoa Santa-MG, Brazil).

Measure: Lipid and Glycemic Profile. The changes are being evaluated.

Time: The collections will be done 24 hours before, in the 6th week and 48 hours after the end of the intervention.

Description: 10 ml of blood will be collected in the beginning of the morning, with fasting of 10 to 12 hours, being done 24 hours before, in the 6th week and after the intervention period. Five milliliters of blood will be placed in test tubes containing EDTA and protected from light and the other 5ml will be placed in tubes without anticoagulants and centrifuged at 3,000 rpm for 10 min. The plasma or serum will be separated, placed in eppendorf tubes and refrigerated at -20 ° C until analyzed by a commercial kit of the Labtest brand (Minas Gerais, Brazil). For this, 250 μl of sample will be added to KCl and incubated in a water bath (37 ° / 60 minutes). The mixture will be precipitated with 35% AA perchloric acid and centrifuged at 14,000 rpm for 10 minutes at 4 ° C. The supernatant will be transferred to eppendorfs and 400μl of 0.6% thiobarbituric acid is added and incubated at 95-100 ° C for 30minutes. The material will be read in a spectrophotometer at a wavelength of 532nm.

Measure: Oxidative stress (Malondialdehyde). The changes are being evaluated.

Time: The collections will be done 24 hours before, in the 6th week and 48 hours after the end of the intervention.

Description: 10 ml of blood will be collected in the beginning of the morning, with fasting of 10 to 12 hours, being done 24 hours before, in the 6th week and after the intervention period. Five milliliters of blood will be placed in test tubes containing EDTA and protected from light and the other 5ml will be placed in tubes without anticoagulants and centrifuged at 3,000 rpm for 10 min. The plasma or serum will be separated, placed in eppendorf tubes and refrigerated at -20 ° C until analyzed by a commercial kit of the Labtest brand (Minas Gerais, Brazil). The evaluation of the total antioxidant capacity will be performed through DPPH. For analysis, 100 μl of plasma will be added to 3.9 ml of vortexed DPPH solution, set to stand for 30 minutes and then centrifuged at 10,000 rpm for 15 minutes at 20 ° C. The supernatant will be used for spectrophotometer reading at 515 nm wavelength, using distilled white water. The result will be expressed as a percentage of antioxidant activity.

Measure: Oxidative stress (Total antioxidant capacity). The changes are being evaluated.

Time: The collections will be done 24 hours before, in the 6th week and 48 hours after the end of the intervention.

Description: 10 ml of blood will be collected in the beginning of the morning, with fasting of 10 to 12 hours, being done 24 hours before, in the 6th week and after the intervention period. Five milliliters of blood will be placed in test tubes containing EDTA and protected from light and the other 5ml will be placed in tubes without anticoagulants and centrifuged at 3,000 rpm for 10 min. The plasma or serum will be separated, placed in eppendorf tubes and refrigerated at -20 ° C until analyzed by a commercial kit of the Labtest brand (Minas Gerais, Brazil). The concentration of hs-CRP will be quantified by immunoturbidimetry in serum samples. Calibration will use the Calibra Calibrator from Labtest (Calibra Plus PCR-ultra - Ref-345). Absorbance will be obtained on the Labmax 240 premium automatic analyzer at 540 nm wavelength. The concentrations of hs-CRP will be determined by the commercial kit (Labtest, Minas Gerais, Brazil) according to the manufacturer's instructions.

Measure: Systemic Inflammation (Plasma ultra-sensitive C-reactive protein). The changes are being evaluated.

Time: The collections will be done 24 hours before, in the 6th week and 48 hours after the end of the intervention.

Description: 10 ml of blood will be collected in the beginning of the morning, with fasting of 10 to 12 hours, being done 24 hours before, in the 6th week and after the intervention period. Five milliliters of blood will be placed in test tubes containing EDTA and protected from light and the other 5ml will be placed in tubes without anticoagulants and centrifuged at 3,000 rpm for 10 min. The plasma or serum will be separated, placed in eppendorf tubes and refrigerated at -20 ° C until analyzed by a commercial kit of the Labtest brand (Minas Gerais, Brazil). The A1GPA concentration will be quantified by immunoturbidimetry using the commercial kit (Labtest, Minas Gerais, Brazil) as per manufacturer's instructions. Calibration will use the Calibra Calibrator from Labtest (Calibra Plus Protein - Ref-346). The absorbance will be obtained in the Labmax 240 premium automatic analyzer (Lagoa Santa-MG, Brazil), at wavelength 340nm.

Measure: Systemic Inflammation (Analysis of alpha-1-glycoprotein acid). The changes are being evaluated.

Time: The collections will be done 24 hours before, in the 6th week and 48 hours after the end of the intervention.

Description: Oral cell samples were collected through a mouthwash for 60 seconds of 5 ml of 3% sucrose solution. The resulting contents of the mouthwash were transferred to a 15 ml tube, which immediately afterwards was placed in a solution of TNE (17 mM Tris-HCl pH 8.0, 50 mM NaCl and 7 mM EDTA), diluted to 66% alcohol and autoclaved distilled water.After this, the extraction and genotyping process followed the recommendations of Saiki et al. (1985)

Measure: DNA Extraction and Genotyping

Time: The genetic collection will be made in the 6th week of the intervention.


HPO Nodes


HP:0000819: Diabetes mellitus
Genes 528
PLIN1 ABCC8 CASR PRSS1 ELMO2 LIMK1 SOX3 PDX1 SLC2A2 PDX1 PDX1 HNF1A HYMAI SPINK1 GNAS COX1 REEP6 PRPF6 STAT3 ND2 SPINK1 KLF11 KIAA1549 WRN KCNJ11 LIG4 ARL6 EDA2R ELN KCNJ11 FOXH1 WFS1 PWAR1 HMGA1 RRM2B GPR35 LIPE PRSS2 WRAP53 STAT3 HAMP TRNC PPP1R3A ATM PAX4 MMP14 RDH12 CP ZNF408 BRAF TRNK TRNL1 ND4 TTC7A NDUFS3 NDUFV2 AEBP1 SPINK1 PSTPIP1 HMGA2 LRP6 LIPE PALLD TCF4 TRNQ CDKN2A TRNK TTPA INS NDUFB11 GJA1 PAX4 CEL PTCH1 PRSS2 XRCC4 BSCL2 SLC7A14 LMNB2 BBS2 PALB2 INSR TIMMDC1 NDUFAF8 NDUFB10 SIX3 AGBL5 WRN GAS1 COX3 PLAGL1 TREX1 PDX1 SMAD4 SLC19A2 LMNA CORIN PDE8B IL6 BEST1 CRX PRKAR1A WFS1 TGIF1 MST1 NDN GCK NDUFS6 CFTR RETN FOXRED1 RBP3 CNGB1 LIPC ZNF513 GPD2 UBR1 NDUFAF4 WFS1 FOS ABCC8 CISD2 TRNQ IFT140 HFE HYMAI IRS1 HNF4A RNASEH2B FGF8 ARMC5 APOA5 LEMD3 DCAF17 PPARG EDA TP53 DCAF17 AGPAT2 GLRX5 OFD1 TINF2 TRNS1 MAGEL2 APPL1 MAPK8IP1 ARL6 GTF2IRD1 PPARG TRNH NDUFS8 NDUFAF3 TDGF1 CDHR1 SNORD115-1 ZFYVE26 TMEM126B CP IGF2BP2 PTPN22 CAV1 CNGA1 DHDDS RFC2 KIZ MEN1 HBB XRCC4 TRNW PRPF8 FOXP1 ABCC8 LMNA NEK2 SNRPN LMNA MAK FGFR1 MMP2 CLIP2 GCK BBS2 HESX1 KCNJ11 ZFP57 PRKACA GLIS3 HNF1A VANGL1 NDUFS2 NEUROD1 NDUFV1 ABCA4 C8ORF37 TRNS2 DMPK LEP BRCA1 ADAR IFIH1 GCK CERKL NRL COX1 CTRC INS GJB4 WFS1 AIP RAC1 GJB3 SBDS ND5 PTF1A LMNA ITCH PROM1 PRSS1 PIK3R1 NEUROD1 HBB GCK CISD2 ND6 IMPDH1 TERT LEPR ALMS1 BRCA2 PRCD BMP2 CAT ELN KCNJ11 TRNL1 PNPLA6 PAX4 NDUFAF2 FOXP3 GATA6 PRPF4 PLAGL1 NODAL HNF1A CA4 TUB CAV1 RNASEH2C TTC8 POLR3A PIK3R1 NR2E3 HNF4A NDUFB3 POLA1 PWRN1 PRKACA PCARE AR INSR COX2 STOX1 IL2RA PDE4D BSCL2 HGSNAT CTNS DNAJC3 IGF1R KLF11 IPW GJA1 GCK DLL1 PEX10 HNF1B CTC1 DNM1L ND6 ARHGEF18 RP1 SLC25A4 NSMCE2 TRNL1 CLRN1 AHR STAT1 NDUFS7 ND1 OPA1 DNAJC3 NDUFAF5 ABCC8 AMACR NOP10 EIF2AK3 MKKS ABCC8 PPARG TRNF ALMS1 GUCA1B PDE6G CTNNB1 CCDC28B ND3 INSR LHX1 CDON APOE HNF4A CPA1 SLC29A3 DMXL2 TOPORS IDH3B NEUROG3 HFE SCAPER ND1 ARL2BP PDE6B BLK TRNE HNF1B HNF1B SAMHD1 PEX6 NEUROD1 NPAP1 COX3 GPR101 CNOT1 EIF2S3 PRPF3 IL2RA HLA-DRB1 ZIC2 NDUFS1 SPATA7 TRMT10A BLM CYP19A1 FUZ PRKAR1A CYTB PTRH2 LMNA TRNV FBN1 MLXIPL ZFP57 AIP KCNJ11 KCNJ11 KRAS FLT1 FXN PLIN1 INS WFS1 TWNK RPGR HNF4A DISP1 BLK PNPLA2 POLG MC4R POLG2 BAZ1B NSMCE2 RTEL1 TRNS2 PROKR2 ND1 PPARG NDP AHI1 SOX2 SAG SLC29A3 HERC2 UBR1 IER3IP1 KCTD1 ABCC8 CFTR CNBP CAVIN1 SLC12A3 MKRN3-AS1 FOXP3 SLC16A2 TWNK PROK2 PCNT EYS COX2 TRNF RGR GTF2I STAT1 PAX4 DHX38 IDH3A ZMPSTE24 PPP1R15B XRCC4 PTPN1 CLCNKB HJV ERGIC1 LEPR RHO SHH NPM1 ZBTB20 ATM NDUFA6 INS AIRE RP9 PTF1A TCF7L2 KLHL7 DNAJC21 AKT2 RLBP1 AKT2 TP53 PLCD1 NKX2-5 CDH23 NDUFS4 FOXC2 HNF1A LMNA LMNA MTNR1B HNF1A TRNW MKRN3 SRP54 GLI2 NDUFA1 IRS2 NDUFA11 TERC USH2A CTRC POC1A RP2 ITPR3 MOG PDX1 IFT172 APPL1 ARNT2 ATP6 ND5 SNORD116-1 CIDEC BBS1 NDUFAF1 PDE11A FAM161A RPE65 PDE4D PARN INS PRPH2 ROM1 TBL2 OTX2 POLD1 MAFA HNF4A KDSR CEP19 GCK SEMA4A ARL3 CEL LRAT HNF1A GATA6 TULP1 SNRNP200 IFT88 AGPAT2 TRNE FSCN2 TRNS1 NDUFB9 GATA3 STUB1 ENPP1 MERTK RNASEH2A KCNJ11 HLA-DQB1 NHP2 FXN IMPG2 SUFU POMGNT1 EIF2AK3 SARS2 HYMAI GCK TKT USB1 ZMPSTE24 PRPF31 HNF1B PDX1 SLC30A8 PNPLA2 SLC19A2 DKC1 PDE6A USP8 EFL1 FGFR1 CRB1 PEX1 NUBPL
HP:0001513: Obesity
Genes 477
SHOX HACE1 THOC2 LIMK1 FMR1 SOX3 PHF6 CLCN4 IFT172 TNFSF4 PDX1 KCNAB2 AGRP GNAS ADCY3 HLA-DRB1 AFF4 REEP6 PRPF6 KLF11 KIAA1549 ARL6 ELN MKS1 PWAR1 IFT27 SDC3 LIPE SYNE2 RAB39B FGF8 ARHGEF6 RDH12 ZNF408 BRAF SH2B1 BPTF HLA-DQB1 ANOS1 LMNA TRIM32 ARX AKT1 KIF7 TRIP12 SLC7A7 IL1RAPL1 SHANK3 INS EGF RAI1 SYNE1 GNAS ATP6AP2 XRCC4 SLC7A14 GNAS HDAC8 BBS2 HSD11B1 MC4R AGBL5 KMT2D ACADVL BBS4 MEGF8 CYP7A1 RAD21 ARVCF BEST1 RPS6KA3 ZNF365 ADRB3 CRX MID2 ATRX NDN UCP3 IQSEC2 SKI RBP3 CNGB1 RAB23 ZNF513 SLC25A4 FLRT3 KISS1R CCDC141 IFT140 TSPAN7 CCDC141 ARMC5 TRAF3IP1 LZTFL1 SUFU OFD1 MAGEL2 SMC1A AKT2 GNAS ARL6 GTF2IRD1 UFD1 TRIM32 CDHR1 NF2 MEGF8 SNORD115-1 WT1 HACE1 SH2B1 CNGA1 DHDDS RFC2 PSMD12 SMO KIZ NTRK2 BBS10 DCC PRPF8 EP300 SOX10 POU3F4 BAP1 TMEM43 NEK2 DEAF1 GNAS-AS1 BBS9 SIN3A SNRPN MAK FGFR1 PHF6 CLIP2 BBS2 COMT BBS2 HESX1 HESX1 GNAS JMJD1C TCF20 MCM3AP NEUROD1 LZTFL1 ARL6 ABCA4 C8ORF37 GHR TMEM67 USP8 HIRA LEP IQSEC2 CERKL NRL PAX6 TBX1 SRY H6PD CREBBP PRKAR1A PROM1 ZNF41 PCSK1 PCSK1 EHMT1 IMPDH1 CNNM2 RNPC3 C8ORF37 ZNF711 LEPR TTC8 ALMS1 PRCD PROKR2 ELN PNPLA6 PAX4 MKKS GATA4 SYP VPS13B FGF17 PRPF4 HNF1A CA4 GDI1 TUB POMC AIP TTC8 ENPP1 KIDINS220 SLC9A7 CEP164 NSD1 NR2E3 TBX1 HNF4A PWRN1 MC3R KIDINS220 KMT2A BDNF MTTP PCARE ARL6 POMC P2RY11 IQSEC2 BBS10 RAB23 KCNJ18 PDE4D BBS9 HDAC4 TUB XYLT1 SEC24C PDSS1 HGSNAT EIF2S3 IGF1R MAGEL2 IPW FTO GCK SPRY4 PRMT7 ARHGEF18 DYRK1B XYLT1 RP1 GNAS CLRN1 AHR MED12 HDAC8 CTSH TTC8 PNKP IFT172 FGFR1 SIM1 MKKS FTSJ1 MAPK8IP3 ALB IFT74 ALMS1 GUCA1B UPF3B ATRX PDE6G CTNNB1 CCDC28B SETD2 SLC10A7 APOE NIPBL BBS7 RAI1 HCFC1 PRDM16 TOPORS WDR11 BBS5 IDH3B PIK3CA SCAPER ARL2BP SPG11 CXORF56 ADRB2 HS6ST1 RREB1 LAS1L PDE6B BLK IL17RD ADNP TBX3 NPAP1 P4HTM EIF2S3 PRPF3 CARTPT SMC3 POMC SPATA7 SH3KBP1 MECP2 CYP19A1 BBS12 MKS1 NKAP HDAC8 RERE PRKAR1A TAF1 UBE3A MLXIPL KCNJ11 INPP5E HCRT IGF1 RPGR APC2 CNKSR2 BLK PRMT7 MC4R PPARG RPS6KA3 HUWE1 BAZ1B PDGFB PROKR2 NIN AHI1 RBMX SOX2 SAG MECP2 TRAF7 WDPCP HERC2 ABCC8 GP1BB TRAPPC9 BBS12 CEP290 ADNP MKRN3-AS1 PTCHD1 ACSL4 CUL4B BAP1 NR0B2 PROK2 TERT PCNT PCNT EYS WT1 FGFR3 IFT27 RGR GTF2I ZNF711 SDCCAG8 EMD LAS1L CACNA1S GNAS DHX38 IDH3A USP27X DYNC2I2 PIGT PDE4D TACR3 LEPR RHO POGZ MRAP2 EXOC6B BBS5 ZBTB20 FOXP1 RP9 BBS7 SH2B1 KLHL7 EHMT1 DNMT3A ARMC5 RLBP1 ALG13 AGTR2 MYT1L VPS13B CDH23 PAX6 PAK3 SMARCB1 LEP BBS4 ARL13B DUSP6 MKRN3 TRAPPC9 AFF4 SDCCAG8 TBX1 GHRL BBS1 STX16 BBIP1 USH2A MOG LMNA PROK2 OFD1 SIM1 FLII RP2 SETD5 MOG FRMPD4 DPYD IFT172 APPL1 ARNT2 SNORD116-1 NSMF BBS1 DLG3 FAM161A RPE65 PDE4D PRPH2 ROM1 TBL2 OTX2 FHL1 ERMARD C8ORF37 NPHP1 CEP19 DMD SEMA4A ARL3 PHIP CEL MAN1B1 LRAT CANT1 GABRD TULP1 SNRNP200 IFT88 MTFMT AKT2 FSCN2 CEP290 MERTK SEMA3A BBIP1 PDE11A CHD7 IMPG2 POMGNT1 SMARCE1 SMAD4 IFT172 MAN1B1 CUL4B USP9X PRPF31 PTEN KDM6A IGFALS WNT4 SETD2 GNAS TBX3 PDE6A FEZF1 USP8 CRB1 ZNF81 GABRA3
Protein Mutations 3
G20210A P12A W64R
HP:0001824: Weight loss
Genes 324
FANCE NALCN CBL DNAJC13 HTT TTR PDX1 COL6A2 BIRC3 ABCC8 NAB2 JAK2 SDHB CEP152 SDHAF2 GBA FANCL VHL PTEN STAT5B RFWD3 PMS2 POLG EPCAM POLG NF1 TP53 SDHB SCNN1A MEFV TP53 IL12A-AS1 SLC11A1 CTLA4 KCNJ11 ATRX MLX BRIP1 GPR35 PTEN THPO STAT3 PML TYMP IGH RRM2B HLCS HSPG2 CCR1 MALT1 SDHD GPC3 MLH3 RRM2B MSH2 CCND1 KLRC4 KCNJ18 SDHC SDHC FH JPH3 FANCF TSHR GIGYF2 POLG PALLD HLA-B TCF4 CDKN2A RUNX1 EDN3 BCOR SDHB BRCA2 ERCC3 NOD2 HLA-DRB1 KRT1 PRNP GJA1 BCL10 IRF2BP2 MRAP BCL6 SUCLA2 RHBDF2 FANCG B2M BCL2 ZBTB16 SNCA SLX4 PALB2 KIF1B HLA-DQA1 SCNN1A TGFBR2 KCNJ11 KRAS SDHD SDHA SMAD4 HLA-B INS FANCI POU6F2 UNC80 DAXX C4A IKZF1 CNTNAP1 ATM LIPA UBAC2 FANCD2 NUMA1 COL6A1 LRP12 FANCA RARA RB1 MST1 SLC39A4 EPAS1 PTPN22 SEMA4A KRT10 TRPV4 PCNT F5 SLC25A11 EWSR1 XRCC2 TRIM28 GALC NDP VPS35 MPL AK2 FIP1L1 ASXL1 CDC73 WT1 WT1 TXNRD2 SEMA3D HLA-DPB1 UBE2T TP53 HLA-DPA1 ERCC4 MPL TRIM28 TLR4 NPM1 SCNN1B ACAT1 PIK3CA GDNF SDHD FAN1 FANCB PLA2G6 FAS HLA-DQB1 CENPE RAD51 STAR ERCC5 CHEK2 SDHD IL12A IGH RET LPIN2 FANCM SLC6A8 ERCC4 SNCA SDHAF1 CRLF1 DLST REST PANK2 SLC9A6 SDHA PRKAR1A LRRK2 EDNRB BMPR1A FLI1 CACNA1S TET2 TET2 ABCC8 PTEN MC2R ATP7B ERCC4 UNC80 GNPTAB NABP1 ATRIP IL10 IFNGR1 IL12B GCK SCNN1G HLA-DRB1 STAT4 RNF168 ZFP57 COL6A3 IL23R BMPR1A COL12A1 DIS3L2 ERAP1 FOXP1 CACNA1S STAT3 STAT6 CALR VPS13A MPL MAFB CENPJ TSHR WT1 BRCA1 TRIP13 NNT TP53 RAD51C BRCA2 AKT1 COL5A1 BTNL2 TBL1XR1 GJB4 CCND1 PTPN22 MSH6 PMS1 ERCC2 PRNP GJB3 TYMP NOS1 JPH3 TMEM127 ACADM GATA2 SDHB BRCA1 CYP24A1 LMNA PRTN3 MLH1 MDH2 SRSF2 DNMT3A HLA-B IGH KRAS DCTN1 BRCA2 JAK2 HMGCL MAD2L2 RET FANCC COL1A1 PLK4 PRNP GATA4 ECE1 AVP FOXP3 TRIM37 PLAGL1 HMBS RBBP8 NOD2 DCTN1 KDSR SEMA3C PIK3R1 MAX SCNN1G KIF1B RPS20 JAK2 GALT COL5A2 RET NRTN H19 CFTR ATR TRAIP KCNJ18 HLA-DQB1 HLA-DRB1 PSAP CDH23 EIF2AK3 MECP2 BTK HLA-DRB1 HYMAI IL6 EIF4G1 CUL4B NBN TGFB1 PALB2 VHL SCNN1B HAVCR2 TET2 JAK2 GABRA3
Protein Mutations 2
I148M P12A