CovidResearchTrials by Shray Alag


CovidResearchTrials Covid 19 Research using Clinical Trials (Home Page)


Report for D011024: Pneumonia, Viral NIH

(Synonyms: Pneumonia, Viral)

Developed by Shray Alag
Clinical Trial MeSH HPO Drug Gene SNP Protein Mutation


Correlated Drug Terms (122)


Name (Synonyms) Correlation
drug1386 Low molecular weight heparin Wiki 0.18
drug2257 Silymarin Wiki 0.13
drug456 COVID-19 Convalscent Plasma Wiki 0.13
drug425 CAStem Wiki 0.13
drug1971 Quantitative IgG Test Wiki 0.13
drug2619 VC Wiki 0.13
drug967 Fourth Trimester Mobile Tool Wiki 0.13
drug1002 Glycine Wiki 0.13
drug820 Echo-Doppler Wiki 0.13
drug3015 standardized Lung Ultrasound (LUS) examination Wiki 0.13
drug1340 Liberase Enzyme (Roche) Wiki 0.13
drug2205 Scanning Chest X-rays and performing AI algorithms on images Wiki 0.13
drug1093 Hydroxychloroquine + placebo Wiki 0.13
drug581 Clinical assessment Wiki 0.13
drug963 Fondaparinux Wiki 0.13
drug1621 No special intervention Wiki 0.13
drug671 Corticosteroid injection Wiki 0.13
drug2696 Withings ScanWatch Wiki 0.13
drug2934 online survey Wiki 0.13
drug3043 ventilatory support with oxygen therapy Wiki 0.13
drug1391 Low-dose radiotherapy Wiki 0.13
drug2079 Respiratory Exercise Training Wiki 0.13
drug146 Allogenic pooled olfactory mucosa-derived mesenchymal stem cells Wiki 0.13
drug325 Bedside lung ultrasound Wiki 0.13
drug1460 Mefloquine Wiki 0.13
drug572 Ciclesonide Inhalation Aerosol Wiki 0.13
drug1461 Mefloquine + azithromycin + / - tocilizumab Wiki 0.13
drug2237 Serological testing Wiki 0.13
drug1719 Oxygen supply Wiki 0.13
drug2832 high flow nasal cannula device Wiki 0.13
drug1397 Lung Ultrasound Wiki 0.13
drug1904 Prevalence of COVID-19 Wiki 0.13
drug2535 Tocilizumab Injection [Actemra] Wiki 0.13
drug2737 alveolar recruitment Wiki 0.13
drug1160 IV Deployment Of cSVF In Sterile Normal Saline IV Solution Wiki 0.13
drug161 Anakinra 100Mg/0.67Ml Inj Syringe Wiki 0.13
drug678 Covid-19 Rapid Test Kit (RAPG-COV-019) Wiki 0.13
drug1487 Microcannula Harvest Adipose Derived tissue stromal vascular fraction (tSVF) Wiki 0.13
drug2586 Ultra-Low-dose radiotherapy Wiki 0.13
drug2103 Ritonavir/lopinavir Wiki 0.13
drug1720 Oxygen-ozone therapy, probiotic supplementation and Standard of care Wiki 0.13
drug1821 Piperacillin/tazobactam Wiki 0.13
drug2277 Snorkel-based improvised personal protective equipment Wiki 0.13
drug1464 Melphalan Wiki 0.13
drug567 Chloroquine or hydroxychloroquine Wiki 0.13
drug2362 Sterile Water for Injection Wiki 0.13
drug1396 Lung Low Dose Radiation Wiki 0.13
drug2462 Telephone survey Wiki 0.13
drug1573 Nasopharyngeal (NP) swab Wiki 0.13
drug2944 patients receiving nasal high flow Wiki 0.13
drug2841 hydroxychloroquine + azithromycin Wiki 0.13
drug2962 predict admission of covid-19 patients to ICU and death with routine and quickly avalaible clinical, biological and radiological variables? Wiki 0.13
drug2349 Standard treatment according to the Clinical protocols Wiki 0.13
drug1164 Ibudilast Wiki 0.13
drug1722 Ozanimod Wiki 0.13
drug2475 Test: Favipiravir 200 mg (LOQULAR) Wiki 0.13
drug2887 meplazumab for injection Wiki 0.13
drug2821 favorable outcome Wiki 0.13
drug1043 Helmet Continuous Positive Airway Pressure (CPAP) Wiki 0.13
drug1769 Patient Education Wiki 0.13
drug2361 Sterile Normal Saline for Intravenous Use Wiki 0.13
drug505 CYNK-001 Wiki 0.13
drug2051 Reference: Favipiravir 200 mg (Avigan) Wiki 0.13
drug1091 Hydroxychloroquine + azithromycin + / - tocilizumab Wiki 0.13
drug1607 Nitric Oxide delivered via LungFit™ system Wiki 0.13
drug537 Centricyte 1000 Wiki 0.13
drug48 80 ppm Nitric Oxide delivered through LungFit Delivery System Wiki 0.13
drug1203 Infusion placebo Wiki 0.13
drug188 Anti-coronavirus antibodies (immunoglobulins) obtained with DFPP form convalescent patients Wiki 0.13
drug657 Convalescent anti-SARS-CoV-2 plasma Wiki 0.13
drug124 Additional biological samples Wiki 0.13
drug128 Aerobic Exercise Training Wiki 0.13
drug2971 pulmonary anomalies 4 months after documented COVID-19 pneumonia Wiki 0.13
drug204 Apple Watch Series 5 Wiki 0.13
drug893 Exposure (not intervention) - SARS-CoV-2 infection Wiki 0.13
drug2582 UNIKINON (Chloroquine phosphate) 200mg tablets Wiki 0.13
drug899 Extra blood sample Wiki 0.13
drug1054 High Flow Nasal Oxygen (HFNO) Wiki 0.13
drug2850 iNO (inhaled nitric oxide) delivered via the INOpulse Delivery System Wiki 0.13
drug1787 Pembrolizumab (MK-3475) Wiki 0.13
drug2847 hyperimmune plasma Wiki 0.13
drug15 150 ppm Nitric Oxide delivered through LungFit Delivery System Wiki 0.13
drug115 Acetylsalicylic acid Wiki 0.13
drug2241 Serology for Covid-19 Wiki 0.13
drug2522 Tirofiban Injection Wiki 0.13
drug2807 eculizumab Wiki 0.13
drug1604 Nitric Oxide Wiki 0.13
drug1399 Lung ultrasound Wiki 0.11
drug1090 Hydroxychloroquine + azithromycin Wiki 0.09
drug2191 Sample collection Wiki 0.09
drug107 Acalabrutinib Wiki 0.09
drug2031 Ravulizumab Wiki 0.09
drug1022 HB-adMSCs Wiki 0.09
drug2665 Vitamin Super B-Complex Wiki 0.09
drug335 Best Supportive Care Wiki 0.09
drug2271 SivoMixx (200 billion) Wiki 0.09
drug588 Clopidogrel Wiki 0.09
drug670 Corticosteroid Wiki 0.09
drug1610 Nivolumab Wiki 0.07
drug748 Dexamethasone Wiki 0.07
drug1444 Mavrilimumab Wiki 0.07
drug641 Control group Wiki 0.07
drug262 Azithromycin Wiki 0.06
drug2840 hydroxychloroquine Wiki 0.06
drug2326 Standard of care Wiki 0.06
drug1822 Placebo Wiki 0.06
drug2187 Saliva collection Wiki 0.06
drug2580 UC-MSCs Wiki 0.06
drug1898 Prednisone Wiki 0.06
drug2765 blood sample Wiki 0.05
drug1086 Hydroxychloroquine Wiki 0.05
drug2527 Tocilizumab Wiki 0.05
drug1598 Nitazoxanide Wiki 0.04
drug601 Colchicine Wiki 0.04
drug852 Enoxaparin Wiki 0.04
drug2116 Ruxolitinib Wiki 0.04
drug1372 Lopinavir/ritonavir Wiki 0.04
drug1484 Methylprednisolone Wiki 0.04
drug1103 Hydroxychloroquine Sulfate Wiki 0.03
drug1613 No intervention Wiki 0.03
drug923 Favipiravir Wiki 0.03
drug1978 Questionnaire Wiki 0.03

Correlated MeSH Terms (43)


Name (Synonyms) Correlation
D011014 Pneumonia NIH 0.45
D008171 Lung Diseases, NIH 0.16
D017563 Lung Diseases, Interstitial NIH 0.16
D045169 Severe Acute Respiratory Syndrome NIH 0.15
D016769 Embolism and Thrombosis NIH 0.15
D030341 Nidovirales Infections NIH 0.13
D011251 Pregnancy Complications, Infectious NIH 0.13
D001261 Pulmonary Atelectasis NIH 0.13
D001469 Barotrauma NIH 0.13
D011649 Pulmonary Alveolar Proteinosis NIH 0.13
D018410 Pneumonia, Bacterial NIH 0.13
D054990 Idiopathic Pulmonary Fibrosis NIH 0.13
D053717 Pneumonia, Ventilator-Associated NIH 0.13
D018352 Coronavirus Infections NIH 0.12
D053120 Respiratory Aspiration NIH 0.10
D001987 Bronchiectasis NIH 0.09
D012140 Respiratory Tract Diseases NIH 0.09
D004646 Emphysema NIH 0.09
D012128 Respiratory Distress Syndrome, Adult NIH 0.09
D008173 Lung Diseases, Obstructive NIH 0.08
D055370 Lung Injury NIH 0.08
D004617 Embolism NIH 0.08
D012120 Respiration Disorders NIH 0.07
D003333 Coronaviridae Infections NIH 0.06
D012327 RNA Virus Infections NIH 0.06
D055371 Acute Lung Injury NIH 0.06
D012127 Respiratory Distress Syndrome, Newborn NIH 0.06
D013927 Thrombosis NIH 0.06
D011658 Pulmonary Fibrosis NIH 0.06
D003141 Communicable Diseases NIH 0.05
D011248 Pregnancy Complications NIH 0.05
D007154 Immune System Diseases NIH 0.05
D007239 Infection NIH 0.05
D004417 Dyspnea NIH 0.05
D013577 Syndrome NIH 0.04
D020141 Hemostatic Disorders NIH 0.04
D007251 Influenza, Human NIH 0.04
D001778 Blood Coagulation Disorders NIH 0.04
D002318 Cardiovascular Diseases NIH 0.03
D012141 Respiratory Tract Infections NIH 0.03
D007249 Inflammation NIH 0.03
D016638 Critical Illness NIH 0.02
D014777 Virus Diseases NIH 0.02

Correlated HPO Terms (13)


Name (Synonyms) Correlation
HP:0002090 Pneumonia HPO 0.45
HP:0002088 Abnormal lung morphology HPO 0.16
HP:0006515 Interstitial pneumonitis HPO 0.16
HP:0006517 Intraalveolar phospholipid accumulation HPO 0.13
HP:0100750 Atelectasis HPO 0.13
HP:0002110 Bronchiectasis HPO 0.09
HP:0006536 Pulmonary obstruction HPO 0.08
HP:0001907 Thromboembolism HPO 0.06
HP:0002206 Pulmonary fibrosis HPO 0.06
HP:0002098 Respiratory distress HPO 0.05
HP:0001928 Abnormality of coagulation HPO 0.04
HP:0011947 Respiratory tract infection HPO 0.03
HP:0001626 Abnormality of the cardiovascular system HPO 0.03

There are 63 clinical trials

Clinical Trials


1 A Survey of Psychological Status of Medical Workers and Residents in the Context of 2019 Novel Coronavirus Pneumonia in Wuhan, China

Due to the outbreak of 2019 Novel Coronavirus Pneumonia in Wuhan, Hubei province, medical staff and residents are facing great psychological pressure, the investigator plan to use electronic questionnaire to carry out investigation research.

NCT04260308 Virus; Pneumonia
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: GHQ-12(general health questionnaire-12): minimal score 0, maximal score 12, higher scores mean a better or worse outcome.

Measure: GHQ-12(general health questionnaire-12)

Time: 2 weeks

Secondary Outcomes

Description: IES-R(Impact of Event Scale-Revised):score range:0-88, the higher the worse

Measure: IES-R(Impact of Event Scale-Revised)

Time: 2 weeks

2 Vitamin C Infusion for the Treatment of Severe 2019-nCoV Infected Pneumonia: a Prospective Randomized Clinical Trial

2019 new coronavirus (2019-nCoV) infected pneumonia, namely severe acute respiratory infection (SARI) has caused global concern and emergency. There is a lack of effective targeted antiviral drugs, and symptomatic supportive treatment is still the current main treatment for SARI. Vitamin C is significant to human body and plays a role in reducing inflammatory response and preventing common cold. In addtion, a few studies have shown that vitamin C deficiency is related to the increased risk and severity of influenza infections. We hypothize that Vitamin C infusion can help improve the prognosis of patients with SARI. Therefore, it is necessary to study the clinical efficacy and safety of vitamin C for the clinical management of SARI through randomized controlled trials during the current epidemic of SARI.

NCT04264533 Vitamin C Pneumonia, Viral Pneumonia, Ventilator-Associated Drug: VC Drug: Sterile Water for Injection
MeSH:Pneumonia, Ventilator-Associated Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: days without ventilation support during 28 days after patients' enrollment

Measure: Ventilation-free days

Time: on the day 28 after enrollment

Secondary Outcomes

Description: wether the patient survives

Measure: 28-days mortality

Time: on the day 28 after enrollment

Description: days of the patients staying in the ICU

Measure: ICU length of stay

Time: on the day 28 after enrollment

Description: the rate of CPR

Measure: Demand for first aid measuments

Time: on the day 28 after enrollment

Description: days of using vasopressors

Measure: Vasopressor days

Time: on the day 28 after enrollment

Description: P O2/Fi O2 which reflects patients' respiratory function

Measure: Respiratory indexes

Time: on the day 10 and 28 after enrollment

Description: Ecmo or ventilator

Measure: Ventilator parameters

Time: on the day 10 and 28 after enrollment

Description: Acute Physiology and Chronic Health Evaluation

Measure: APACHE II scores

Time: on the day 10 after enrollment

Description: Sepsis-related Organ Failure Assessment

Measure: SOFA scores

Time: on the day 10 after enrollment

3 Clinical Research Regarding the Availability and Safety of UC-MSCs Treatment for Serious Pneumonia and Critical Pneumonia Caused by the 2019-nCOV Infection

Serious Pneumonia and Critical Pneumonia caused by the 2019-nCOV infection greatly threats patients' life, UC-MSCs treatment has been proved to play a role in curing multiple diseases. And this study is conducted to find out whether or not it will function in 2019-nCOV infection Pneumonia.

NCT04269525 Pneumonia, Viral Pneumonia, Ventilator-Associated Biological: UC-MSCs
MeSH:Pneumonia, Ventilator-Associated Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: partial arterial oxygen pressure (PaO2) / oxygen concentration (FiO2)

Measure: Oxygenation index

Time: on the day 14 after enrollment

Secondary Outcomes

Description: whether the patient survives

Measure: 28 day mortality

Time: on the day 28 after enrollment

Description: days of the patients in hospital

Measure: Hospital stay

Time: up to 6 months

Description: whether or not the 2019-nCoV antibody is positive

Measure: 2019-nCoV antibody test

Time: on the day 7,14,28 after enrollment

Description: whether or not the 2019-nCoV nucleic acid test is positive

Measure: 2019-nCoV nucleic acid test

Time: on the day 7,14,28 after enrollment

Description: whether lung imaging examinations show the improvement of the pneumonia

Measure: Improvement of lung imaging examinations

Time: on the day 7,14,28 after enrollment

Description: counts of white blood cell in a litre of blood

Measure: White blood cell count

Time: on the day 7,14,28 after enrollment

Description: counts of lymphocyte in a litre (L) of blood

Measure: Lymphocyte count

Time: on the day 7,14,28 after enrollment

Description: procalcitonin in microgram(ug)/L

Measure: Procalcitonin

Time: on the day 7,14,28 after enrollment

Description: IL-2 in picogram(pg)/millilitre(mL)

Measure: interleukin(IL)-2

Time: on the day 7,14,28 after enrollment

Description: IL-4 in pg/mL

Measure: IL-4

Time: on the day 7,14,28 after enrollment

Description: IL-6 in pg/mL

Measure: IL-6

Time: on the day 7,14,28 after enrollment

Description: IL-10 in pg/mL

Measure: IL-10

Time: on the day 7,14,28 after enrollment

Description: TNF-α in nanogram(ng)/L

Measure: tumor necrosis factor(TNF)-α

Time: on the day 7,14,28 after enrollment

Description: γ-IFN in a thousand unit (KU)/L

Measure: γ-interferon(IFN)

Time: on the day 7,14,28 after enrollment

Description: CRP in microgram(μg)/L

Measure: C-reactive protein(CRP)

Time: on the day 7,14,28 after enrollment

Description: counts of CD4+ T-Lymphocytopenia in litre

Measure: CD4+ T-Lymphocytopenia

Time: on the day 7,14,28 after enrollment

Description: counts of CD8+ T-Lymphocytopenia in a litre

Measure: CD8+ T-Lymphocytopenia

Time: on the day 7,14,28 after enrollment

Description: counts of NK in a litre

Measure: natural killer cell(NK)

Time: on the day 7,14,28 after enrollment

4 Nitric Oxide Gas Inhalation Therapy in Spontaneous Breathing Patients With Mild/Moderate COVID19 Infection: a Randomized Clinical Trial

The scientific community is in search for novel therapies that can help to face the ongoing epidemics of novel Coronavirus (COVID-19) originated in China in December 2019. At present, there are no proven interventions to prevent progression of the disease. Some preliminary data on SARS pneumonia suggest that inhaled Nitric Oxide (NO) could have beneficial effects on COVID-19 due to the genomic similarities between this two coronaviruses. In this study we will test whether inhaled NO therapy prevents progression in patients with mild to moderate COVID-19 disease.

NCT04290858 Coronavirus Infections Pneumonia, Viral Dyspnea Drug: Nitric Oxide
MeSH:Infection Communicable Diseases Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Dyspnea
HPO:Dyspnea Pneumonia Respiratory distress

Primary Outcomes

Description: The primary outcome will be the proportion of patients with mild COVID2019 who deteriorate to a severe form of the disease requiring intubation and mechanical ventilation. Patients with indication to intubation and mechanical ventilation but concomitant DNI (Do Not Intubate) or not intubated for any other reason external to the clinical judgment of the attending physician will be considered as meeting the criteria for the primary endpoint.

Measure: Reduction in the incidence of intubation and mechanical ventilation

Time: 28 days

Secondary Outcomes

Description: Mortality from all causes

Measure: Mortality

Time: 28 days

Description: Proportion of patients with a negative conversion of RT-PCR from an oropharyngeal or a nasopahryngeal swab

Measure: Negative conversion of COVID-19 RT-PCR from upper respiratory tract

Time: 7 days

Description: Time from initiation of the study to discharge or to normalization of fever (defined as <36.6°C from axillary site, or < 37.2°C from oral site or < 37.8°C from rectal or tympanic site), respiratory rate (< 24 bpm while breathing room air) and alleviation of cough (defined as mild or absent in a patient reported scale of severe >>moderate>>mild>>absent).

Measure: Time to clinical recovery

Time: 28 days

5 Nitric Oxide Gas Inhalation Therapy in Spontaneous Breathing Patients With Mild/Moderate COVID-19: a Randomized Clinical Trial

The scientific community is in search for novel therapies that can help to face the ongoing epidemics of novel Coronavirus (SARS-Cov-2) originated in China in December 2019. At present, there are no proven interventions to prevent progression of the disease. Some preliminary data on SARS pneumonia suggest that inhaled Nitric Oxide (NO) could have beneficial effects on SARS-CoV-2 due to the genomic similarities between this two coronaviruses. In this study we will test whether inhaled NO therapy prevents progression in patients with mild to moderate COVID-19 disease.

NCT04305457 Coronavirus Infections Pneumonia, Viral Acute Respiratory Distress Syndrome Drug: Nitric Oxide
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Respiratory Distress Syndrome, Newborn Respiratory Distress Syndrome, Adult Acute Lung Injury

Primary Outcomes

Description: The primary outcome will be the reduction in the incidence of patients requiring intubation and mechanical ventilation, as a marker of deterioration from a mild to a severe form of COVID-19. Patients with indication to intubation and mechanical ventilation but concomitant DNI (Do Not Intubate) or not intubated for any other reason external to the clinical judgment of the attending physician will be considered as meeting the criteria for the primary endpoint.

Measure: Reduction in the incidence of patients with mild/moderate COVID-19 requiring intubation and mechanical ventilation

Time: 28 days

Secondary Outcomes

Description: Proportion of deaths from all causes

Measure: Mortality

Time: 28 days

Description: Time from initiation of the study to discharge or to normalization of fever (defined as <36.6°C from axillary site, or < 37.2°C from oral site or < 37.8°C from rectal or tympanic site), respiratory rate (< 24 bpm while breathing room air), alleviation of cough (defined as mild or absent in a patient reported scale of severe >>moderate>>mild>>absent) and resolution of hypoxia (defined as SpO2 ≥ 93% in room air or P/F ≥ 300 mmHg). All these improvements must be sustained for 72 hours.

Measure: Time to clinical recovery

Time: 28 days

Other Outcomes

Description: Proportion of patients with a negative conversion of RT-PCR from an oropharyngeal or oropharyngeal swab.

Measure: Negative conversion of COVID-19 RT-PCR from upper respiratory tract

Time: 7 days

6 The Benefits of Artificial Intelligence Algorithms (CNNs) for Discriminating Between COVID-19 and Influenza Pneumonitis in an Emergency Department Using Chest X-Ray Examinations

This project aims to use artificial intelligence (image discrimination) algorithms, specifically convolutional neural networks (CNNs) for scanning chest radiographs in the emergency department (triage) in patients with suspected respiratory symptoms (fever, cough, myalgia) of coronavirus infection COVID 19. The objective is to create and validate a software solution that discriminates on the basis of the chest x-ray between Covid-19 pneumonitis and influenza

NCT04313946 COVID-19 Pneumonia, Viral Influenza With Pneumonia Flu Symptom Flu Like Illness Pneumonia, Interstitial Pneumonia, Ventilator-Associated Pneumonia Atypical Diagnostic Test: Scanning Chest X-rays and performing AI algorithms on images
MeSH:Pneumonia, Ventilator-Associated Influenza, Human Pneumonia, V Pneumonia, Viral Pneumonia Lung Diseases, Interstitial
HPO:Interstitial pneumonitis Interstitial pulmonary abnormality Pneumonia

Primary Outcomes

Description: Number of participants with pneumonitis on Chest X-Ray and COVID 19 positive

Measure: COVID-19 positive X-Rays

Time: 6 months

Description: Number of participants with pneumonitis on Chest X-Ray and COVID 19 negative

Measure: COVID-19 negative X-Rays

Time: 6 months

7 Evaluation of the Safety and Clinical Efficacy of Hydroxychloroquine Associated With Azithromycin in Patients With Pneumonia Caused by Infection by the SARS-CoV2 Virus - Coalition COVID-19 Brasil II - SEVERE - Patients

The Severe Acute Respiratory Syndrome COronaVirus 2 (SARS-CoV2) is a new and recognized infectious disease of the respiratory tract. Around 20% of those infected have severe pneumonia and currently there is no specific or effective therapy to treat this disease. Therapeutic options using malaria drugs chloroquine and hydroxychloroquine have shown promising results in vitro and in vivo test. But those efforts have not involved large, carefully-conducted controlled studies that would provide the global medical community the proof that these drugs work on a significant scale. In this way, the present study will evaluate the effectiveness and safety of the use of hydroxychloroquine combined with azithromycin compared to hydroxychloroquine monotherapy in patients hospitalized with pneumonia by SARS-CoV2 virus.

NCT04321278 Coronavirus Infections Pneumonia, Viral Drug: Hydroxychloroquine + azithromycin Drug: Hydroxychloroquine
MeSH:Infection Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Evaluation of the clinical status of patients on the 15th day after randomization defined by the Ordinal Scale of 6 points (score ranges from 1 to 6, with 6 being the worst score)

Measure: Evaluation of the clinical status

Time: 15 days after randomization

Secondary Outcomes

Description: All-cause mortality rates at 29 days after randomization

Measure: All-cause mortality

Time: 29 days after randomization

Description: Evaluation of the clinical status of patients on the 7th and 29th day after randomization defined by the Ordinal Scale of 6 points (score ranges from 1 to 6, with 6 being the worst score)

Measure: Evaluation of the clinical status

Time: 7 and 29 days after randomization

Description: Number of days free from mechanical ventilation at 29 days after randomization

Measure: Number of days free from mechanical ventilation

Time: 29 days after randomization

Description: Number of days that the patient was on mechanical ventilation after randomization

Measure: Duration of mechanical ventilation

Time: 29 days after randomization

Description: Length of hospital stay on survivors

Measure: Duration of hospitalization

Time: 29 days after randomization

Description: Presence of other secondary infections

Measure: Other secondary infections

Time: 29 days after randomization

Description: Time from treatment start to death

Measure: Time from treatment start to death

Time: 29 days after randomization

Description: Morbimortality, daily life activities, mental health, and quality of life

Measure: Medium and long-term outcomes of SARS-CoV2 infection on morbimortality, daily life activities, mental health, and quality of life

Time: 3, 6, 9 and 12 months

Description: Leucocyte transcriptome

Measure: Assess whether the tested therapies may be affected by leucocyte phenotype

Time: Baseline

Other Outcomes

Description: Occurrence of QT interval prolongation

Measure: QT interval prolongation

Time: 29 days after randomization

Description: Occurrence of gastrointestinal intolerance

Measure: Gastrointestinal intolerance

Time: 29 days after randomization

Description: Occurrence of laboratory hematimetric parameters, creatinine and bilirubin

Measure: Laboratory abnormalities

Time: 29 days after randomization

Description: Occurrence of adverse events related to the use of the investigational products

Measure: Adverse events

Time: 29 days after randomization

8 Proposal for International Standardization of the Use of Lung Ultrasound for COVID-19 Patients; a Simple, Quantitative, Reproducible Method

Growing evidences are showing the usefulness of lung ultrasound in patients with COVID-19. Sars-CoV-2 has now spread in almost every country in the world. In this study, the investigators share their experience and propose a standardized approach in order to optimize the use of lung ultrasound in covid-19 patients. The investigators focus on equipment, procedure, classification and data-sharing.

NCT04322487 Coronavirus Epidemic Disease Pneumonia, Viral Diagnostic Test: Lung ultrasound
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Scoring procedures Score 0: The pleura line is continuous, regular. Horizontal artifacts (A-line) are present. These artifacts are generally referred as A-lines. Score 1: The pleura line is indented. Below the indent, vertical areas of white are visible. Score 2: The pleura line is broken. Below the breaking point, small to large consolidated areas (darker areas) appear with associated areas of white below the consolidated area (white lung). Score 3: The scanned area shows dense and largely extended white lung with or without larger consolidations At the end of the procedure, the clinician will write for each area the highest score obtained.

Measure: Lung ultrasound grading system for COVID-19 pneumonia

Time: At enrollment.

9 Colchicine to Counteract Inflammatory Response in COVID-19 Pneumonia

Cytokines and chemokines are thought to play an important role in immunity and immunopathology during virus infections [3]. Patients with severe COVID-19 have higher serum levels of pro-inflammatory cytokines (TNF-α, IL-1 and IL-6) and chemokines (IL-8) compared to individuals with mild disease or healthy controls, similar to patients with SARS or MERS . The change of laboratory parameters, including elevated serum cytokine, chemokine levels, and increased NLR in infected patients are correlated with the severity of the disease and adverse outcome, suggesting a possible role for hyper-inflammatory responses in COVID-19 pathogenesis. Importantly, previous studies showed that viroporin E, a component of SARS-associated coronavirus (SARS-CoV), forms Ca2C-permeable ion channels and activates the NLRP3 inflammasome. In addition, another viroporin 3a was found to induce NLRP3 inflammasome activation . The mechanisms are unclear. Colchicine, an old drug used in auto-inflammatory disorders (i.e., Familiar Mediterranean Fever and Bechet disease) and in gout, counteracts the assembly of the NLRP3 inflammasome, thereby reducing the release of IL-1b and an array of other interleukins, including IL-6, that are formed in response to danger signals. Recently, colchicine has been successfully used in two cases of life-threatening post-transplant capillary leak syndrome. These patients had required mechanically ventilation for weeks and hemodialysis, before receiving colchicine, which abruptly restored normal respiratory function and diuresis over 48 hrs [4].

NCT04322565 Coronavirus Infections Pneumonia, Viral Drug: Colchicine
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Time to clinical improvement: defined as time from randomization to an improvement of two points from the status at randomization on a seven-category ordinary scale

Measure: Clinical improvement

Time: Day 28

Description: Live discharge from the hospital (whatever comes first)

Measure: Hospital discharge

Time: Day 28

Secondary Outcomes

Description: Number of death patients

Measure: Death

Time: Day 28

Description: 7-category ordinal scale

Measure: Clinical status

Time: Day 7, Day 14

Description: Number of patients with mechanical ventilhation

Measure: Mechanical ventilhation

Time: Day 28

Description: Days of hospitalization

Measure: Hospitalization

Time: Day 28

Description: Days to death from treatment initiation

Measure: Time from treatment initiation to death

Time: Day 28

Description: negativization of two consecutive pharyngo-nasal swab 24-72 hrs apart

Measure: Time to Negativization COVID 19

Time: Day 21

Description: Time to remission of fever in patients with T>37.5°C at enrollment

Measure: Fever

Time: Day 1,4,7,14,21,28

10 Time of Recovery and Prognostic Factors of COVID-19 Pneumonia

It has been reported that nearly half of the patients who are hospitalized for Covid-19 pneumonia have on admission old age or comorbidities. In particular, hypertension was present in 30% of the cases, diabetes in 19%, coronary heart disease in 8% and chronic obstructive lung disease in 3% of the patients. Amazingly, in the two major studies published in the Lancet (Zhou F et al Lancet 2020) and in the New England Journal of Medicine (Guan W et al 2020), the weight of the subjects as well their body mass index (BMI) were omitted. However, obesity, alone or in association with diabetes, can be a major predisposition factor for Covid-19 infection. The primary end-point of our prospective, observational study is to assess the recovery rate in patients with diagnosis of Covid-19 pneumonia. Among the other secondary end-points, we intend to find the predictors of the time to clinical improvement or hospital discharge in patients affected by Covid-19 pneumonia.

NCT04324684 Pneumonia, Viral Hypertension Diabetes Mellitus Obesity Cardiovascular Diseases Obstructive Lung Disease
MeSH:Pneumonia, Viral Pneumonia Lung Diseases Lung Diseases, Obstructive Cardiovascular Diseases
HPO:Abnormal lung morphology Abnormality of the cardiovascular system Pneumonia Pulmonary obstruction

Primary Outcomes

Description: mean rate of recovery in patients with diagnosis of Covid-19 pneumonia, who present with complications at the time of hospital admission (such as diabetes, obesity, cardiovascular disease, hypertension or respiratory failure), with the mean recovery rate in patients without any of the above-mentioned complications.

Measure: rate of recovery

Time: 3 weeks

Secondary Outcomes

Description: comparison of the survival curves (times to improvement) in the two groups (patients with and without complications) and among patients presenting with different types of complications

Measure: time to improvement

Time: 3 weeks

Description: the efficacy of different pharmaceutical treatment against Covid-19

Measure: efficacy of treatments

Time: 3 weeks

Description: liver, kidney or multiorgan failure, cardiac failure

Measure: organ failure

Time: 3 weeks

11 Use of cSVF For Residual Lung Damage (COPD/Fibrotic Lung Disease After Symptomatic COVID-19 Infection For Residual Pulmonary Injury or Post-Adult Respiratory Distress Syndrome Following Viral (SARS-Co-2) Infection

COVID-19 Viral Global Pandemic resulting in post-infection pulmonary damage, including Fibrotic Lung Disease due to inflammatory and reactive protein secretions damaging pulmonary alveolar structure and functionality. A short review includes: - Early December, 2019 - A pneumonia of unknown cause was detected in Wuhan, China, and was reported to the World Health Organization (WHO) Country Office. - January 30th, 2020 - The outbreak was declared a Public Health Emergency of International Concern. - February 7th, 2020 - 34-year-old Ophthalmologist who first identified a SARS-like coronavirus) dies from the same virus. - February 11th, 2020 - WHO announces a name for the new coronavirus disease: COVID-19. - February 19th, 2020 - The U.S. has its first outbreak in a Seattle nursing home which were complicated with loss of lives.. - March 11th, 2020 - WHO declares the virus a pandemic and in less than three months, from the time when this virus was first detected, the virus has spread across the entire planet with cases identified in every country including Greenland. - March 21st, 2020 - Emerging Infectious Disease estimates the risk for death in Wuhan reached values as high as 12% in the epicenter of the epidemic and ≈1% in other, more mildly affected areas. The elevated death risk estimates are probably associated with a breakdown of the healthcare system, indicating that enhanced public health interventions, including social distancing and movement restrictions, should be implemented to bring the COVID-19 epidemic under control." March 21st 2020 -Much of the United States is currently under some form of self- or mandatory quarantine as testing abilities ramp up.. March 24th, 2020 - Hot spots are evolving and identified, particularly in the areas of New York-New Jersey, Washington, and California. Immediate attention is turned to testing, diagnosis, epidemiological containment, clinical trials for drug testing started, and work on a long-term vaccine started. The recovering patients are presenting with mild to severe lung impairment as a result of the viral attack on the alveolar and lung tissues. Clinically significant impairment of pulmonary function appears to be a permanent finding as a direct result of the interstitial lung damage and inflammatory changes that accompanied. This Phase 0, first-in-kind for humans, is use of autologous, cellular stromal vascular fraction (cSVF) deployed intravenously to examine the anti-inflammatory and structural potential to improve the residual, permanent damaged alveolar tissues of the lungs.

NCT04326036 Pulmonary Alveolar Proteinosis COPD Idiopathic Pulmonary Fibrosis Viral Pneumonia Coronavirus Infection Interstitial Lung Disease Procedure: Microcannula Harvest Adipose Derived tissue stromal vascular fraction (tSVF) Device: Centricyte 1000 Procedure: IV Deployment Of cSVF In Sterile Normal Saline IV Solution Drug: Liberase Enzyme (Roche) Drug: Sterile Normal Saline for Intravenous Use
MeSH:Infection Communicable Diseases Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Lung Diseases Pulmonary Fibrosis Idiopathic Pulmonary Fibrosis Lung Diseases, Interstitial Pulmonary Alveolar Proteinosis
HPO:Abnormal lung morphology Interstitial pneumonitis Interstitial pulmonary abnormality Intraalveolar phospholipid accumulation Pulmonary fibrosis

Primary Outcomes

Description: Reporting of Adverse Events or Severe Adverse Events Assessed by CTCAE v4.0

Measure: Incidence of Treatment-Emergent Adverse Events

Time: 1 month

Secondary Outcomes

Description: High Resolution Computerized Tomography of Lung (HRCT Lung) for Fluidda Analysis comparative at baseline and 3 and 6 months post-treatment comparative analytics

Measure: Pulmonary Function Analysis

Time: baseline, 3 Month, 6 months

Description: Finger Pulse Oximetry taken before and after 6 minute walk on level ground, compare desaturation tendency

Measure: Digital Oximetry

Time: 3 months, 6 months

12 COVID-19-associated ARDS Treated With DEXamethasone: an Open-label, Randomized, Controlled Trial: CoDEX (Alliance Covid-19 Brasil III)

The Severe Acute Respiratory Syndrome COronaVirus 2 (SARS-CoV2) is a new and recognized infectious disease of the respiratory tract. Most cases are mild or asymptomatic. However, around 5% of all patients develop Acute Respiratory Distress Syndrome (ARDS), which is the leading mortality cause in these patients. Corticosteroids have been tested in deferent scenarios of ARDS, including viral pneumonia, and the early use of dexamethasone is safe and appears to reduce the duration of mechanical ventilation in ARDS patients. Nevertheless, no large, randomized, controlled trial was performed evaluating the role of corticosteroids in patients with ARDS due SARS-CoV2 virus. Therefore, the present study will evaluate the effectiveness of dexamethasone compared to control (no corticosteroids) in patients with moderate and severe ARDS due to SARS-CoV2 virus.

NCT04327401 Coronavirus Infection Pneumonia, Viral Acute Respiratory Distress Syndrome Drug: Dexamethasone
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Respiratory Distress Syndrome, Newborn Respiratory Distress Syndrome, Adult Acute Lung Injury

Primary Outcomes

Description: Ventilator-free days, defined as alive and free from mechanical ventilation, at 28 days after randomization.

Measure: Ventilator-free days

Time: 28 days after randomization

Secondary Outcomes

Description: Evaluation of the clinical status of patients on the 15th day after randomization defined by the 6-point Ordinal Scale, this scale ranges from 1 (Not hospitalized) to 6 (Death) with higher scores meaning worse outcomes.

Measure: Evaluation of the clinical status

Time: 15 days after randomization

Description: All-cause mortality rates at 28 days after randomization.

Measure: All-cause mortality

Time: 28 days after randomization

Description: Number of days of mechanical ventilation from randomization to day 28.

Measure: Mechanical ventilation duration

Time: 28 days after randomization

Description: Sequential Organ Failure Assessment (SOFA) Score 48 hours, 72 hours and 7 days after randomization

Measure: Sequential Organ Failure Assessment (SOFA) Score

Time: Score at 48 hours, 72 hours and 7 days after randomization

Other Outcomes

Description: Intensive Care Unit free days, defined as alive and discharged from the intensive care unit, at 28 days after randomization.

Measure: Intensive Care Unit free days

Time: 28 days after randomization

13 Clinical Characteristics and Outcomes of Children Potentially Infected by Severe Acute Respiratory Distress Syndrome (SARS)-CoV-2 Presenting to Pediatric Emergency Departments

Rationale: The clinical manifestations of SARS-CoV-2 infection in children are poorly characterized. Preliminary findings indicate that they may be atypical. There is a need to identify the spectrum of clinical presentations, predictors of severe disease (COVID-19) outcomes, and successful treatment strategies in this population. Goals: Primary - Describe and compare characteristics of confirmed SARS-CoV-2 infected children with symptomatic test-negative children. Secondary - 1) Describe and compare confirmed SARS-CoV-2 infected children with mild versus severe COVID-19 outcomes; 2) Describe healthcare resource utilization for, and outcomes of, screening and care of pediatric COVID-19 internationally, alongside regional public health policy changes. Methods: This prospective observational study will occur in 50 emergency departments across 11 countries. We will enroll 12,500 children who meet institutional screening guidelines and undergo SARS-CoV-2 testing. Data collection focuses on epidemiological risk factors, demographics, signs, symptoms, interventions, laboratory testing, imaging, and outcomes. Collection will occur at enrollment, 14 days, and 90 days. Timeline: Recruitment will last for 12 months (worst-case model) and will begin within 7-14 days of funding notification after ongoing expedited review of ethics and data sharing agreements. Impact: Results will be shared in real-time with key policymakers, enabling rapid evidence-based adaptations to pediatric case screening and management.

NCT04330261 COVID-19 SARS-CoV-2 Infection Pediatric ALL Pneumonia, Viral Pandemic Response Other: Exposure (not intervention) - SARS-CoV-2 infection
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Clinical characteristics among children presenting to a participating hospital's EDs who meet each site's local SARS-CoV-2 screening criteria, will be described and compared between children with confirmed SARS-CoV-2 (i.e. test-positive) versus suspected (i.e. test-negative) infections.

Measure: Clinical characteristics of children with SARS-CoV-2

Time: 18 months

Description: Factors associated with severe outcomes [i.e. positive pressure ventilation (invasive or noninvasive) OR intensive care unit admission with ventilatory or inotropic support OR death; other outcomes may be added as the understanding of the epidemic evolves) will be identified in confirmed paediatric COVID-19 cases.

Measure: Factors associated with severe COVID-19 outcomes

Time: 18 months

Secondary Outcomes

Description: Health care resource utilization for patient management (e.g. frequencies of isolation, laboratory testing, imaging, and supportive care, with associated costs) of both suspected and confirmed SARS-CoV-2 infected children according to changes in national and regional policies.

Measure: Health care resource utilization for COVID-19 patient management

Time: 18 months

Description: The sensitivity and specificity of various case screening policies for the detection of confirmed symptomatic SARS-CoV-2 infection (i.e. COVID-19) in children (e.g. addition of vomiting/diarrhoea).

Measure: Sensitivity and specificity of COVID-19 case screening policies

Time: 18 months

14 Safety and Efficacy Study of Human Embryonic Stem Cells Derived M Cells (CAStem) for the Treatment of Severe COVID-19 Associated With or Without Acute Respiratory Distress Syndrome (ARDS)

A phase1/2, open label, dose escalation, safety and early efficacy study of CAStem for the treatment of severe COVID-19 associated with or without ARDS.

NCT04331613 COVID-19 Acute Respiratory Distress Syndrome Virus; Pneumonia Acute Lung Injury Biological: CAStem
MeSH:Pneumonia, Viral Pneumonia Respiratory Distress Syndrome, Newborn Respiratory Distress Syndrome, Adult Acute Lung Injury Lung Injury Syndrome
HPO:Pneumonia

Primary Outcomes

Description: Frequency of adverse reaction (AE) and severe adverse reaction (SAE) within 28 days after treatment

Measure: Adverse reaction (AE) and severe adverse reaction (SAE)

Time: Within 28 days after treatment

Description: Evaluation by chest CT

Measure: Changes of lung imaging examinations

Time: Within 28 days after treatment

Secondary Outcomes

Description: Marker for SARS-CoV-2

Measure: Time to SARS-CoV-2 RT-PCR negative

Time: Within 28 days after treatment

Description: The duration of a fever above 37.3 degrees Celsius

Measure: Duration of fever (Celsius)

Time: Within 28 days after treatment

Description: Marker for efficacy

Measure: Changes of blood oxygen (%)

Time: Within 28 days after treatment

Description: Marker for efficacy

Measure: Rate of all-cause mortality within 28 days

Time: Within 28 days after treatment

Description: Counts of lymphocyte in a litre (L) of blood

Measure: Lymphocyte count (*10^9/L)

Time: Within 28 days after treatment

Description: Alanine aminotransferase in unit (U)/litre(L)

Measure: Alanine aminotransferase (U/L)

Time: Within 28 days after treatment

Description: Creatinine in micromole (umol)/litre(L)

Measure: Creatinine (umol/L)

Time: Within 28 days after treatment

Description: Creatine kinase in U/L

Measure: Creatine kinase (U/L)

Time: Within 28 days after treatment

Description: C-reactive in microgram (mg)/litre(L)

Measure: C-reactive protein (mg/L)

Time: Within 28 days after treatment

Description: Procalcitonin in nanogram (ng)/litre(L)

Measure: Procalcitonin (ng/L)

Time: Within 28 days after treatment

Description: Lactate in millimole(mmol)/litre(L)

Measure: Lactate (mmol/L)

Time: Within 28 days after treatment

Description: IL-1beta in picogram(pg)/millilitre(mL)

Measure: IL-1beta (pg/mL)

Time: Within 28 days after treatment

Description: IL-2 in pg/mL

Measure: IL-2 (pg/mL)

Time: Within 28 days after treatment

Description: IL-6 in pg/mL

Measure: IL-6 (pg/mL)

Time: Within 28 days after treatment

Description: IL-8 in pg/mL

Measure: IL-8 (pg/mL)

Time: Within 28 days after treatment

15 A Randomized, Controlled, Open-Label, Phase II Trial to Evaluate the Efficacy and Safety of Tocilizumab Combined With Pembrolizumab (MK-3475) in Patients With Coronavirus Disease 2019 (COVID-19)-Pneumonia

This is a prospective, multicenter, randomized, controlled, open-label, phase 2 clinical trial

NCT04335305 COVID-19 Pneumonia, Viral Drug: Tocilizumab Biological: Pembrolizumab (MK-3475)
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Assessed by hospital records

Measure: Percentage of patients with normalization of SpO2 ≥96% on room air (measured without any respiratory support for at least 15 minutes

Time: through day 14 after study treatment initiation

Secondary Outcomes

Description: Assessed by hospital records

Measure: Proportion of patients discharged from the emergency department and classified as low risk

Time: through End of Study, defined as 90 ± 14 days after study entry

Description: Assessed by hospital records

Measure: Number of days of patient hospitalization

Time: through End of Study, defined as 90 ± 14 days after study entry

Description: The clinical status will be assessed by the SOFA scores

Measure: Change from baseline in organ failure parameters

Time: Days 1, 3, 5, 7, 14 (+/- 1 day) and 28 (+/- 2 days) or until discharge whatever it comes first.

Description: Determined as percentage of dead patients

Measure: Proportion of mortality rate

Time: through End of Study, defined as 90 ± 14 days after study entry

Description: Determined as: Time to invasive mechanical ventilation (if not previously initiated); Time to independence from non-invasive mechanical ventilation; Time to independence from oxygen therapy.

Measure: Analysis of the remission of respiratory symptoms

Time: through End of Study, defined as 90 ± 14 days after study entry

Description: by using the same imaging technique (chest X-ray or thoracic CT scan)

Measure: Evaluation of the radiological response

Time: at days 1 and 28 (+/- 2 days)

Description: determined using oropharyngeal or anal swabs

Measure: Time to first negative in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR test

Time: within 28 days from study inclusion

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of absolute lymphocyte count (ALC),white blood cell count and white blood cell differential count

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of hemoglobin

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of platelets

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of activated partial thromboplastin time (aPTT)

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST)

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of creatinine

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of glucose

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of total bilirubin

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Baseline defined as the value collected at day 1, 2 hours before treatment administration

Measure: Change from baseline of albumin

Time: days 3, 5, 7, 10, 14 and 28 after administration of study drug

Description: Evaluated using the Common Terminology Criteria for Adverse Events version 5.0 (CTCAE v.5.0), SOFA scores.

Measure: Incidence of adverse events (AEs), incidence of prespecified AEs (safety and tolerability)

Time: Up to End of Study, defined as 90 ± 14 days after study entry

16 Outcomes of Patients With COVID-19 in the Intensive Care Unit: A National Observational Study (Mexico COVID-19 ICU Study)

The objective of this study is to evaluate the clinical characteristics and outcomes of critically ill patients with COVID-19 admitted to the intensive care unit. A Multicenter Observational Study.

NCT04336345 Coronavirus Infections COVID-19 Viral Pneumonia Human Coronavirus
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Mortality 30 days following hospital admission

Measure: Hospital mortality

Time: 30 days

Secondary Outcomes

Description: The number of calendar days from the day of admission (counted as 1 day) to day of intensive care unit discharge

Measure: Length of stay in the intensive care unit

Time: Through study completion, an average of 30 days

17 French Multicentre Observational Study on SARS-Cov-2 Infections (COVID-19) ICU Management: the FRENCH CORONA Study

Since December 2019, a new agent, the SARS-Cov-2 coronavirus has been rapidly spreading from China to other countries causing an international outbreak of respiratory illnesses named COVID-19. In France, the first cases have been reported at the end of January with more than 60000 cases reported since then. A significant proportion (20-30%) of hospitalized COVID-19 patients will be admitted to intensive care unit. However, few data are available for this special population in France. We conduct a large observational cohort of ICU suspected or proven COVID-19 patients that will enable to describe the initial management of COVID 19 patients admitted to ICU and to identify factors correlated to clinical outcome.

NCT04340466 Pneumonia, Viral Critically Ill Corona Virus Infection Other: No intervention
MeSH:Infection Communicable Diseases Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Critical Illness
HPO:Pneumonia

Primary Outcomes

Description: Mortality at day 28

Measure: Mortality at day 28

Time: day 28

Secondary Outcomes

Description: severe complications (pulmonary embolism, acute kidney injury, myocarditis, cardiac arrest, liver failure, ventilator associated pneumonia) Yes / No

Measure: severe complications

Time: up to day 28

Description: Delay in imaging in hours

Measure: Imaging

Time: day 1

Description: delay in microbiological diagnosis in hours

Measure: Delay in Microbiological diagnosis

Time: day 1

Description: Antiviral therapy Yes / no

Measure: Antiviral therapy

Time: up to day 28

Description: Antibiotic therapy Yes / No

Measure: Antibiotic therapy

Time: day 28

Description: Covid-19 treatments Yes / No

Measure: Covid-19 treatments

Time: up to day 28

Description: number

Measure: Patients receiving renal replacement therapy

Time: up to day 28

Description: number

Measure: Patients receiving mechanical ventilation

Time: up to day 28

Description: Patient alive at day 28 : yes / No

Measure: Vital status

Time: day 28

18 Prospective Descriptive Study on the Evolution of Pulmonary Ultrasound in Patients Hospitalized for Covid19

Clinical thoracic ultrasound plays an important role in the exploration, diagnosis and follow-up of thoracic pathologies. The COVID (Coronavirus Disease) epidemic is leading to a large influx of patients in the emergency department with respiratory disorders. The rapid diagnosis of respiratory disorders in infected patients is important for further management. Chest ultrasound has already demonstrated its value in the diagnosis of pneumonia in the emergency department with superiority over chest X-ray. However, there is little data on the thoracic ultrasound semiology of viral pneumonia in general and of COVID in particular.

NCT04341766 Pneumonia, Viral COVID-19 Other: No special intervention
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: description of ultrasound abnormalities for Covid-19 patients

Measure: Characteristics of pulmonary ultrasound for Covid-19 patients

Time: Day one

Secondary Outcomes

Description: description of ultrasound abnormalities for Covid-19 patients

Measure: Characteristics of pulmonary ultrasound for Covid-19 patients

Time: Day 3

Description: description of ultrasound abnormalities for Covid-19 patients

Measure: Characteristics of pulmonary ultrasound for Covid-19 patients

Time: Day 14

Description: description of CT-scan abnormalities for Covid-19 patients

Measure: Charateristics of pulmonary CT-scan for Covid-19 patients

Time: Day 1

Description: description of CT-scan abnormalities for Covid-19 patients

Measure: Charateristics of pulmonary CT-scan for Covid-19 patients

Time: Day 3

Description: description of CT-scan abnormalities for Covid-19 patients

Measure: Charateristics of pulmonary CT-scan for Covid-19 patients

Time: Day 14

19 Corticosteroids During Covid-19 Viral Pneumonia Related to SARS-Cov-2 Infection

Infection with the SARS-Cov-2 virus, responsible of severe acute respiratory distress syndrome (SARS), is an emerging infectious disease called Covid-19 and declared as pandemic by the World Health Organization on March 11, 2020. This pandemic is responsible of significant mortality. In France, several thousand patients are hospitalized in intensive care units, and their number continues to increase. Mortality during Covid-19 is mainly linked to acute respiratory distress syndrome, which frequency is estimated in France to occur in 6% of infected patients. Comorbidities such as cardiovascular conditions, obesity and diabetes increase susceptibility to severe forms of Covid-19 and associated mortality. Therapeutic management has three components: symptomatic management, including supplementary oxygen therapy and in case of respiratory distress mechanical ventilation; the antiviral approach; and immunomodulation, aiming at reducing inflammation associated with viral infection, which is considered to take part in severe presentations of the disease. During Covid-19 viral pneumonia related to SARS-COv-2, there is a significant release of pro-inflammatory cytokines in the acute phase of viral infection, which could participate in viral pneumonia lesions. In children with less mature immune system than adults, SARS-Cov-2 infection is less severe. The current prevailing assumption is that severe forms of Covid-19 may not only be related to high viral replication, but also to an excessive inflammatory response favoring acute lung injury and stimulating infection. The investigators hypothesize that early control of the excessive inflammatory response may help reducing the risk of acute respiratory distress syndrome. The investigators will evaluate the benefit, safety and tolerability of corticosteroid therapy to reduce the rate of subjects hospitalized for Covid-19 viral pneumonia who experience clinical worsening with a need of high-flow supplemental oxygen supplementation or transfer in intensive care units for respiratory support.

NCT04344288 Viral Pneumonia Human Coronavirus COVID-19 Drug: Prednisone Other: Control group
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: SpO2 <90% stabilized at rest and under not more than 5 L / min of supplemental oxygen using medium concentration mask. measured twice at 5-15 min intervalsThe average value of the two measurements will be calculated.

Measure: Number of patients with a theoretical respiratory indication for transfer to intensive care unit evaluated by a SpO2 <90% stabilized at rest and under not more than 5 L / min of supplemental oxygen using medium concentration mask.

Time: 7 days

Secondary Outcomes

Description: level1: not hospitalized no limited activities, level 7: death

Measure: disease severity assessed on a 7-level ordinal scale

Time: 7 days

Measure: number of patients with a supplemental oxygen use

Time: 7 days

Description: Reduction of radiological signs on chest imaging

Measure: radiological signs on chest imaging

Time: 7 days

Measure: number of patients transferred to intensive care unit

Time: 21 days

Measure: number of patients requiring invasive ventilation

Time: 21 days

Description: duration on days

Measure: Duration of oxygen therapy

Time: 21 days

Measure: number of adverse events induced by corticosteroid treatment

Time: 21 days

Measure: number of patients with infections other than SARS-CoV-2

Time: 21 days

Measure: number of deaths

Time: 21 days

20 Chloroquine Phosphate Against Infection by the Novel Coronavirus SARS-CoV-2 (COVID-19): The HOPE Open-Label, Non Randomized Clinical Trial

This is an open label clinical study to evaluate the activity of chloroquine phosphate in patients with SARS-CoV-2 virus infection. The study aims to document possible prevention of pneumonia in patients staying at home and in improving the symptoms of SARS-CoV-2 pneumonia in patients who will be hospitalised.

NCT04344951 Pneumonia, Viral Covid-19 Drug: UNIKINON (Chloroquine phosphate) 200mg tablets
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Achieving 50% reduction in symptom score for patients with lower respiratory tract infection on day 8 visit from study initiation.

Measure: 50% reduction in symptom score for patients with lower respiratory tract infection

Time: Day 8 visit from study initiation

Description: Lack of progression to lower respiratory tract infection in patients enrolled in the study due to upper respiratory tract infection on day 8 visit from study initiation.

Measure: Lack of progression for patients with upper respiratory tract infection

Time: Day 8 visit from study initiation

Secondary Outcomes

Description: Lower respiratory tract infection rating takes place. The symptoms checked are: Cough, Chest pain, Dyspnea, expectoration. For each symptom score is given from 0 to 3 depending on the intensity and they are summed.

Measure: Comparison of the primary endpoint with respective patients not receiving the treatment

Time: Day 14 visit from study initiation

Description: It is defined as the presence of both of the following: Respiratory quotient (pO2 / FiO2) less than 150 Need for treatment with CPAP or mechanical ventilation

Measure: Serious respiratory failure until day 14. This will be compared with respective patients not receiving the treatment.

Time: Day 14 visit from study initiation

Description: Frequency of AEs and SAEs

Measure: Frequency of AEs and SAEs

Time: Day 14 visit from study initiation

21 Efficacy and Safety of Treatment With Convalescent Plasma for Adults With COVID-19 Pneumonia. A Double-blinded, Randomized, Multicenter Placebo-controlled Trial

CCAP is an investigator-initiated multicentre, randomized, double blinded, placebo-controlled trial, which aims to assess the safety and efficacy of treatment with convalescent plasma for patients with moderate-severe COVID-19. Participants will be randomized 2:1 to two parallel treatment arms: Convalescent plasma, and intravenous placebo. Primary outcome is a composite endpoint of all-cause mortality or need of invasive mechanical ventilation up to 28 days.

NCT04345289 COVID Corona Virus Infection Viral Pneumonia Biological: Convalescent anti-SARS-CoV-2 plasma Other: Infusion placebo
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Composite outcome

Measure: All-cause mortality or need of invasive mechanical ventilation

Time: 28 days

Secondary Outcomes

Description: Number of participants with adverse events with possible relation to study drug

Measure: Frequency of adverse events

Time: 90 days

Description: Number of participants with serious adverse events according to International Council of Harmonisation-Good Clinical Practice (ICH-GCP) guidelines

Measure: Frequency of severe adverse events

Time: 90 days

Description: Number of days to improvement of at least 2 categories relative to baseline on the ordinal scale. Categories are as follows: Death; Hospitalized, in intensive care requiring Extracorporeal Membrane Oxygenation (ECMO) or mechanical ventilation; Hospitalized, on non-invasive ventilation or high-flow oxygen device; Hospitalized, requiring supplemental oxygen; Hospitalized, not requiring supplemental oxygen; Not hospitalized, limitation on activities and/or requiring home oxygen; Not hospitalized, no limitations on activities

Measure: Time to improvement of at least 2 categories relative to baseline on a 7-category ordinal scale of clinical status

Time: 90 days

Description: Number of days without mechanical ventilation

Measure: Ventilator-free days

Time: 28 days

Description: Number of days without organ-failure

Measure: Organ failure-free days

Time: 28 days

Description: Number of days in ICU

Measure: Duration of ICU stay

Time: 90 days

Description: Number of deaths by any cause

Measure: Mortality rate

Time: 7, 14, 21, 28 and 90 days

Description: Days from the date of hospital admission for COVID-19 to the date of discharge

Measure: Length of hospital stay

Time: 90 days

Description: Days requiring supplement oxygen

Measure: Duration of supplemental oxygen

Time: 90 days

22 Randomized Trial Assessing Efficacy and Safety of Hydroxychloroquine Plus Azithromycin Versus Hydroxychloroquine for Hospitalized Adults With COVID-19 Pneumonia

Double blinded randomized clinical trial designed to evaluate the efficacy and safety of hydroxychloroquine combined with azithromycin compared to hydroxychloroquine monotherapy in patients hospitalized with confirmed COVID-19 pneumonia.

NCT04345861 Coronavirus Infection Pneumonia, Viral Drug: Hydroxychloroquine + placebo Drug: hydroxychloroquine + azithromycin
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Evaluation of the clinical status of patient defined by the Ordinal Scale of 7 points (score range from 1 to 7 , with 7 being the worst score)

Measure: Time to clinical improvement of at least 1 level on the ordinal scale between Day 1 (day of the first administration of study drug) to Day 11 (day after last day of treatment).

Time: up to Day 11

Secondary Outcomes

Description: Evaluation of the clinical status of patient defined by the Ordinal Scale of 7 points at day 15 and day 29

Measure: Clinical status assessed by ordinal scale

Time: up to Day 29

Description: Necessity for transfer to Intensive care unit

Measure: transfer to ICU

Time: up to Day 29

Description: days from admission to hospital discharge

Measure: Length of hospital day

Time: up to Day 29

Description: incidence of all-cause mortality

Measure: Hospital Mortality

Time: Day 29

Description: Need to mechanical ventilation

Measure: Need to Mechanical Ventilation

Time: up to Day 29

Description: adverse reactions

Measure: Occurence of grade 3-4 adverse event

Time: up to Day 29

Description: ECG

Measure: QTc Lengthening

Time: up to Day 11

Description: Thoracic CT scan : number and size of ground-glass opacifications on day 1 and day 11 Two independent pulmonary imagery experts will assess abnormalities according to a standardized framework

Measure: Evolution of pulmonary CT scan images

Time: up to Day 11

23 An Open Randomized Study of the Effectiveness of the Drug Mefloquine, Tablets 250 mg, Produced by FSUE SPC "Farmzashita" of the Federal Medical Biological Agency, FMBA of Russia (Russia) for the Treatment of Patients With COVID19

Study of the effectiveness and safety of the drug Mefloquine, tablets 250 mg, produced by FSUE "SPC" Farmzaschita " FMBA of Russia (Russia), in comparison with the drug Hydroxychloroquine, tablets 200 mg, for the treatment of patients with coronavirus infection, in the "off-label" mode, to make a decision on the possibility of expanding the indications for use.

NCT04347031 Pneumonia, Viral Respiratory Failure Drug: Mefloquine Drug: Hydroxychloroquine Combination Product: Mefloquine + azithromycin + / - tocilizumab Combination Product: Hydroxychloroquine + azithromycin + / - tocilizumab
MeSH:Pneumonia, Viral Pneumonia Respiratory Insufficiency
HPO:Pneumonia

Primary Outcomes

Description: The number of patients with development of respiratory failure requiring transfer to the ICU.

Measure: 1st primary endpoint for group 1

Time: up to 10 days

Description: The period of clinical recovery.

Measure: 2nd primary endpoint for group 1

Time: up to 10 days

Description: The period of clinical recovery.

Measure: 1st primary endpoint for group 2

Time: up to 10 days

Description: Frequency of fatal outcomes associated with coronavirus infection disease (COVID19)

Measure: 2nd primary endpoint for group 2

Time: through study completion, an average of 3 months

Secondary Outcomes

Description: A change in viral load by conducting PCR assay through different timeframes

Measure: 1st secondary endpoint for group 1

Time: on days 5 and 10

Description: Frequency of clinical cure on day 10 from the start of therapy

Measure: 2nd secondary endpoint for group 1

Time: on day 10

Description: The retention time of the reaction temperature from the start of the treatment.

Measure: 3d secondary endpoint for group 1

Time: up to 10 days

Description: Concentration of C-reactive protein in blood plasma.

Measure: 4th secondary endpoint for group 1

Time: up to 10 days

Description: Respiratory index.

Measure: 5th secondary endpoint for group 1

Time: up to 10 days

Description: Frequency appearance unwanted phenomena and serious unwanted phenomena

Measure: 6th secondary endpoint for group 1

Time: up to 10 days

Description: A change in viral load by conducting PCR assay through different timeframes

Measure: 1st secondary endpoint for group 2

Time: on days 5 and 10

Description: Respiratory index.

Measure: 2nd secondary endpoint for group 2

Time: up to 10 days

Description: The retention time of the reaction temperature from the start of treatment.

Measure: 3d secondary endpoint for group 2

Time: up to 10 days

Description: Concentration of C-reactive protein in blood plasma.

Measure: 4th secondary endpoint for group 2

Time: up to 10 days

Description: Number of patients required transition to alternative therapy schedule

Measure: 5th secondary endpoint for group 2

Time: up to 10 days

Description: Frequency of adverse events and serious adverse events

Measure: 6th secondary endpoint for group 2

Time: up to 10 days

24 A Prospective International Lung UltraSound Analysis (ILUSA) Study in Tertiary Maternity Wards During the SARS-CoV-2 Pandemic

Currently there is a great need for an accurately and rapid assessment of patients suspected for Covid-19. Like CT, Lung Ultrasound (LUS) examination can potentially help with the initial triage of patients but also help track the evolution of the disease. LUS can be used in every setting, including settings with limited infrastructure, allowing the reduction of disparities in trials participation. LUS is also a practical approach that can be used by obstetricians/gynecologists, who are the primary care givers in the labour and delivery room. The International Lung UltraSound Analysis (ILUSA) Study is an international multicenter prospective explorative observational study to assess the predictive value of LUS in Covid-19 suspected and diagnosed pregnant patients.

NCT04353141 COVID Pregnancy Complications, Infectious Pregnancy Related Pregnancy, High Risk Pregnancy Disease Pneumonia Pneumonia, Viral Diagnoses Disease Diagnostic Test: standardized Lung Ultrasound (LUS) examination
MeSH:Pregnancy Complications, Infectious Pneumonia, Viral Pneumonia Pregnancy Complications
HPO:Pneumonia

Primary Outcomes

Description: The primary endpoint is diagnostic performance in terms of the area under the receiver operating characteristic curve (AUC, also known as the c-statistic) and sensitivity and specificity with regard to the prediction of poor outcome. Outcome at one week from admission: good outcome includes discharge or inpatient breathing in free air; poor outcome includes patient with oxygen support, patients with CPAP/ high oxygen flow cannula, or patient with endotracheal intubation during the week.

Measure: Diagnostic performance of LUS to predict poor outcome

Time: outcome one week after enrollment into the study

25 SOLIRIS® (Eculizumab) for the Treatment of Participants With Coronavirus Disease 2019 (COVID 19) - An Expanded Access Program for Hospital-based Emergency Treatment

This protocol provides access to eculizumab treatment for participants with severe COVID-19.

NCT04355494 COVID-19 Pneumonia, Viral Acute Lung Injury/Acute Respiratory Distress Syndrome (ARDS) Biological: eculizumab
MeSH:Pneumonia, Viral Pneumonia Respiratory Distress Syndrome, Newborn Respiratory Distress Syndrome, Adult Acute Lung Injury Lung Injury Syndrome
HPO:Pneumonia


26 COVID-19: A Pilot Study of Adaptive Immunity and Anti-PD1

This is an open-label, controlled, single-centre pilot study of nivolumab in adult patients with COVID-19. This clinical study aims to evaluate efficacy of anti-PD1 antibody in relation to viral clearance and its safety.

NCT04356508 COVID-19 SARS-CoV-2 2019-nCoV Pneumonia, Viral Drug: Nivolumab
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Viral load changes in NPS based on SARS-CoV-2 RT-PCR

Measure: Viral clearance kinetics

Time: From diagnosis to recovery, assessed up to 6 months

Secondary Outcomes

Description: Incidence and severity of treatment-related adverse events

Measure: Treatment-related adverse events of nivolumab (Intervention arm only)

Time: Up to 1 year after nivolumab dosing

Description: Changes in lymphocyte counts

Measure: Lymphocyte kinetics

Time: On days 1, 4, 6, 8, 10 and 28 from study enrollment

Description: Changes in cytokine levels (e.g. IL-1B, IL-2, IL-6, TNFa)

Measure: Cytokine kinetics

Time: On days 1, 4, 6, 8 and 10 from study enrollment

Measure: Length of inpatient stay due to COVID-19

Time: From hospital admission to discharge, assessed up to 6 months

27 Expanded Access: Pulsed, Inhaled Nitric Oxide (iNO) for the Treatment of Patients With Mild or Moderate Coronavirus Disease (COVID-19)

The search for novel therapies to address the ongoing coronavirus (COVID-19) pandemic is ongoing. No proven therapies have been identified to prevent progression of the virus. Preliminary data suggest that inhaled nitric oxide (iNO) could have benefit in preventing viral progression and reducing reliance on supplemental oxygen and ventilator support. Expanded access allows for iNO to be delivered via the portable INOpulse delivery system for the treatment of COVID-19.

NCT04358588 Coronavirus Infection COVID-19 Pneumonia, Viral Drug: iNO (inhaled nitric oxide) delivered via the INOpulse Delivery System
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia


28 Bacterial and Fungal Microbiota of Patients With Severe Viral Pneumonia With SARS-CoV2

Observational pilot single-center study aiming to determine the microbiota of critically ill patients infected with SARS-CoV-2. COVID-19 patients will be compared to historical critically ill controls with no SARS-CoV-2 infection.

NCT04359706 Sars-CoV2
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: relative abundances and diversity indices

Measure: Composition of the fecal bacterial and fungal microbiota

Time: At 28 days

Secondary Outcomes

Description: Alterations in fecal microbiota composition (including virose, bacteria and fungi) in COVID-19 patients compared with controls

Measure: Analysis of the faecal microbiota from rectal swab

Time: at baseline and every 7 days during 28 days

Description: Alterations in respiratory microbiota composition (including virose, bacteria and fungi) in COVID-19 patients compared with controls

Measure: Analysis of the respiratory microbiota from the bronchoalveolar lavage liquid

Time: at baseline and every 7 days during 28 days

Description: Changes in blood, c-reactive protein, leucocyte, lymphocyte from baseline

Measure: Serum inflammatory markers changes

Time: at 28 days,

Description: changes in Cytokine/ chemokine from baseline

Measure: Inflammatory markers changes

Time: at 28 days,

Description: death

Measure: Mortality

Time: at 28 days,

Description: Number of days alive without mechanical ventilation

Measure: mechanical ventilation free days

Time: at 28 days,

29 PEEP Incremental and Decremental Alveolar Recruitment of Critically Ill COVID-19 Patients Under Electric Impedance Tomography (EIT)

COVID-19 originated from Severe Acut Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to critical condition due to hypoxemic respiratory failure with the background of viral pneumonia. Both alevolar recruitment and the subsequent optimal positive end-expiratory pressure (PEEP) adjustment has a pivotal role in the elimination of atelectasis developed by inflammation in the lung parenchyma The gold standard of the follow up of recruitment manoeuvre is the chest computed tomography (CT) examination. However, reduction of intrahospital transport and the exposure with healthcare workers are recommended because of the extremely virulent pathogen spreading easily by droplet infection. In this case bedside investigations have an utmost importance in the management of hygiene regulations. Electric impedance tomography (EIT) is a non-invasive, radiation free functional imaging technique easily applicable at the bedside.

NCT04360837 COVID-19 Virus; Pneumonia Atelectasis Procedure: alveolar recruitment
MeSH:Pneumonia, Viral Pneumonia Pulmonary Atelectasis
HPO:Atelectasis Pneumonia

Primary Outcomes

Description: Estimation of change in compliance (ml/cmH2O) from the beginning to end of of the incremental/decremental PEEP alveolar recruitment.

Measure: Changes in lung compliance

Time: 20 minutes

Description: Estimation of change in global impedance (%) from the beginning to end of of the incremental/decremental PEEP alveolar recruitment.

Measure: Change in global impedance

Time: 20 minutes

Description: Estimation of change in global impedance (%) on a daily manner.

Measure: Change in recruitability

Time: 7 days

Secondary Outcomes

Description: Change in arterial partial pressure of oxygen (PaO2) (mmHg) following recruitment

Measure: Gas exchange

Time: 20 minutes and 7 days

Description: Change in plateau pressure (cmH2O) following recruitment

Measure: Plateau pressure

Time: 20 minutes and 7 days

Description: Change in end expiratory lung impedance (%)

Measure: End expiratory lung impedance (EELI)

Time: 20 minutes and 7 days

Description: Change in antero-to-posterior ventilation ratio (%) following intervention

Measure: Antero-to-posterior ventilation ratio

Time: 20 minutes and 7 days

Description: Change in center of ventilation (%) following intervention

Measure: Center of ventilation

Time: 20 minutes and 7 days

Description: Change in global inhomogeneity index (%) following intervention

Measure: Global inhomogeneity index

Time: 20 minutes and 7 days

30 A Phase I/II Study of Human Placental Hematopoietic Stem Cell Derived Natural Killer Cells (CYNK-001) for the Treatment of Adults With COVID-19

This study is a Phase 1 / 2 trial to determine the safety and efficacy of CYNK-001, an immunotherapy containing Natural Killer (NK) cells derived from human placental CD34+ cells and culture-expanded, in hospitalized patients with moderate COVID-19 disease.

NCT04365101 Coronavirus Coronavirus Infection Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia Pneumonia, Viral Lung Diseases Respiratory Tract Disease Respiratory Tract Infections Coronaviridae Infections Nidovirales Infections RNA Virus Infections Virus Disease Immunologic Disease ARDS Immunologic Factors Physiological Effects of Drugs Antiviral Agents Anti-infective Agents Analgesics Antimetabolites, Antineoplastic Biological: CYNK-001
MeSH:Infection Communicable Dis Communicable Diseases Respiratory Tract Infections Coronavirus Infections Severe Acute Respiratory Syndrome RNA Virus Infections Pneumonia, Viral Coronaviridae Infections Nidovirales Infections Pneumonia Lung Diseases Virus Diseases Respiratory Tract Diseases Immune System Diseases
HPO:Abnormal lung morphology Pneumonia Respiratory tract infection

Primary Outcomes

Description: Number and severity of adverse events

Measure: Phase 1: Frequency and Severity of Adverse Events (AE)

Time: Up to 12 months

Description: Proportion of subjects with "negative" measurement of COVID-19 by rRT-PCR

Measure: Phase 1: Rate of clearance of SARS-CoV-2

Time: Up to 12 months

Description: Proportion of subjects who improved clinical symptoms related to lower respiratory tract infection, as measured by National Early Warning Score 2 (NEWS2) score.

Measure: Phase 1: Rate of clinical improvement

Time: Up to 12 months

Description: Time from the date of randomization to the clearance of SARS-CoV-2 by rRT-PCR in nasal and/or lower respiratory tract samples. Negative results will need to be confirmed by a second negative result in the same sample type at least 24 hours after the first negative result.

Measure: Phase 2: Time to Clearance of SARS-CoV-2

Time: Up to 28 days

Description: Time from the date of randomization to the first date of improved clinical symptoms related to lower respiratory tract infection. Improvement as measured by National Early Warning Score 2 (NEWS2) Score.

Measure: Phase 2: Time to Clinical Improvement by NEWS2 Score

Time: Up to 28 days

Secondary Outcomes

Description: Proportion of subjects with "negative" measurement of COVID-19 by rRT-PCR

Measure: Rate of Clearance of SARS-CoV-2

Time: Up to 12 months

Description: Number and severity of adverse events

Measure: Phase 2: Frequency and Severity of Adverse Events (AE)

Time: up to 12 months

Description: Time to medical discharge as an assessment of overall clinical benefit

Measure: Overall Clinical Benefit by time to medical discharge

Time: up to 12 months

Description: Hospital utilization will be measured as an assessment of overall clinical benefit

Measure: Overall Clinical Benefit by hospital utilization

Time: up to 12 months

Description: Mortality rate will be measured as an assessment of overall clinical benefit

Measure: Overall Clinical Benefit by measuring mortality rate

Time: up to 12 months

Description: Assess the impact of CYNK-001 on changes in sequential organ failure assessment (SOFA) score.

Measure: Impact of CYNK-001 on sequential organ failure assessment (SOFA) score

Time: Up to 28 days

Description: Time from randomization to the date of disappearance of virus from lower respiratory tract infection (LRTI) specimen where it has previously been found (induced sputum, endotracheal aspirate).

Measure: Time to Pulmonary Clearance

Time: Up to 28 days

Description: For ventilatory support subjects, the days with supplemental oxygen-free.

Measure: Supplemental oxygen-free days

Time: Up to 28 days

Description: Proportion of subjects who need invasive or non-invasive ventilation

Measure: Proportion of subjects requiring ventilation

Time: Up to 28 days

31 Oxygen-Ozone as Adjuvant Treatment in Early Control of Disease Progression in Patients With COVID-19 Associated With Modulation of the Gut Microbial Flora

Italy was the first European country affected by a severe outbreak of the Severe Acute Respiratory Syndrome - CoronaVirus-2 (SARS-CoV-2) epidemic emerged from Wuhan region (China), with a high morbidity and mortality associated with the disease. In light of its pandemic spread and the very limited therapeutic options, COronaVIrus Disease 19 (COVID-19) is considered an unprecedented global health challenge. Therefore, the evaluation of new resources, designed in the first instance for other pathologies but potentially active against COVID-19, represents a priority in clinical research. This is an interventional, non-pharmacological, open, randomized, prospective, non-profit study on the adjuvant use of oxygen ozone therapy plus probiotic supplementation in the early control of disease progression in patients with COVID-19. Contextually, all patients are treated with the current standard of care on the basis of the interim guidelines of the Italian Society of Infectious and Tropical Diseases. The main purpose of the study is to evaluate the effectiveness of an ozone therapy-based intervention (accompanied by supplementation with probiotics) in containing the progression of COVID-19 and in preventing the need for hospitalization in intensive care units.

NCT04366089 COVID SARS-CoV 2 Pneumonia, Viral Coronavirus Infection Other: Oxygen-ozone therapy, probiotic supplementation and Standard of care Dietary Supplement: SivoMixx (200 billion) Drug: Azithromycin Drug: hydroxychloroquine
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Comparison between the two groups

Measure: Delta in the number of patients requiring orotracheal intubation despite treatment

Time: 21 days

Secondary Outcomes

Description: Comparison between the two groups

Measure: Delta of crude mortality

Time: 21 days

Description: Comparison between the two groups

Measure: Delta of length of stay for patients in hospital

Time: 90 days

Description: Comparison between the two groups

Measure: delta in the value of interleukin (IL)-1

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of IL-6

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of IL-10

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of Tumor Necrosis Factor (TNF)-alpha

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of cluster of differentiation (CD)4+ CD38/ Human Leukocyte Antigen-DR isotype (HLA-DR)

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of CD8+ CD38/ HLA-DR

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of fecal calprotectin

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of lipopolysaccharide (LPS)

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of zonulin

Time: 21 days

Description: Comparison between the two groups

Measure: delta in the value of alpha1-antitrypsin

Time: 21 days

32 Platelet Inhibition With GP IIb/IIIa Inhibitor in Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). A Compassionate Use Protocol

This is a compassionate use, proof of concept, phase IIb, prospective, interventional, pilot study in which the investigators will evaluate the effects of compassionate-use treatment with IV tirofiban 25 mcg/kg, associated with acetylsalicylic acid IV, clopidogrel PO and fondaparinux 2.5 mg s/c, in patients affected by severe respiratory failure in Covid-19 associated pneumonia who underwent treatment with continuous positive airway pressure (CPAP).

NCT04368377 Pneumonia, Viral Corona Virus Infection Respiratory Failure Embolism and Thrombosis Drug: Tirofiban Injection Drug: Clopidogrel Drug: Acetylsalicylic acid Drug: Fondaparinux
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Respiratory Insufficiency Thrombosis Embolism Embolism and Thrombosis
HPO:Pneumonia Thromboembolism

Primary Outcomes

Description: Change in ratio between partial pressure of oxygen in arterial blood, measured by means of arterial blood gas analysis, and inspired oxygen fraction at baseline and after study treatment

Measure: P/F ratio

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Description: Change in partial pressure of oxygen in arterial blood, measured by means of arterial blood gas analysis, at baseline and after study treatment

Measure: PaO2 difference

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Description: Change in alveolar-arterial gradient of oxygen at baseline and after study treatment. Arterial alveolar gradient will be calculated using the following parameters derived from arterial blood gas analysis: partial pressure of oxygen in arterial blood and partial pressure of carbon dioxide in arterial blood.

Measure: A-a O2 difference

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Secondary Outcomes

Description: Number of days on continuous positive end expiratory pressure (CPAP)

Measure: CPAP duration

Time: From the first day of study drugs administration (T0) until day 7 post study drugs administration

Description: Difference in intensity of the respiratory support (non invasive mechanical ventilation, CPAP, high flow nasal cannula (HFNC), Venturi Mask, nasal cannula, from higher to lower intensity, respectively) employed at baseline and at 72 and 168 hours after study treatment initiation

Measure: In-hospital change in intensity of the respiratory support

Time: At baseline and 72 and 168 hours after treatment initiation

Description: Difference in partial pressure of carbon dioxide in arterial blood, measured by means of arterial blood gas analysis, at baseline and after study treatment

Measure: PaCO2 difference

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Description: Difference in concentration of bicarbonate in arterial blood, measured by means of arterial blood gas analysis, at baseline and after study treatment

Measure: HCO3- difference

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Description: Difference in concentration of lactate in arterial blood, measured by means of arterial blood gas analysis, at baseline and after study treatment

Measure: Lactate difference

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Description: Difference in hemoglobin concentration in blood samples, measured by means of blood chemistry test, at baseline and after study treatment.

Measure: Hb difference

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Description: Difference in platelet concentration in blood samples, measured by means of blood chemistry test, at baseline and after study treatment.

Measure: Plt difference

Time: At baseline and 24, 48 and 168 hours after treatment initiation

Description: Any major or minor adverse effect occuring during and after the administration of the study drug (e.g. bleeding)

Measure: Adverse effects

Time: From the first day of study drugs administration until day 30 post study drugs administration

33 A Phase 3 Open-label, Randomized, Controlled Study to Evaluate the Efficacy and Safety of Intravenously Administered Ravulizumab Compared With Best Supportive Care in Patients With COVID-19 Severe Pneumonia, Acute Lung Injury, or Acute Respiratory Distress Syndrome

This study will evaluate the efficacy, safety, pharmacokinetics, and pharmacodynamics of ravulizumab administered in adult patients with Coronavirus Disease 2019 (COVID-19) severe pneumonia, acute lung injury, or acute respiratory distress syndrome. Patients will be randomly assigned to receive ravulizumab in addition to best supportive care (BSC) (2/3 of the patients) or BSC alone (1/3 of the patients). Best supportive care will consist of medical treatment and/or medical interventions per routine hospital practice.

NCT04369469 COVID-19 Severe Pneumonia Acute Lung Injury Acute Respiratory Distress Syndrome Pneumonia, Viral Biological: Ravulizumab Other: Best Supportive Care
MeSH:Pneumonia, Viral Pneumonia Respiratory Distress Syndrome, Newborn Respiratory Distress Syndrome, Adult Acute Lung Injury Lung Injury Syndrome
HPO:Pneumonia

Primary Outcomes

Measure: Survival (based on all-cause mortality) at Day 29

Time: Baseline, Day 29

Secondary Outcomes

Measure: Number of days free of mechanical ventilation at Day 29

Time: Baseline, Day 29

Measure: Duration of intensive care unit stay at Day 29

Time: Baseline, Day 29

Measure: Change from baseline in Sequential Organ Failure Assessment at Day 29

Time: Baseline, Day 29

Measure: Change from baseline in SpO2/FiO2 at Day 29

Time: Baseline, Day 29

Measure: Duration of hospitalization at Day 29

Time: Baseline, Day 29

Measure: Survival (based on all-cause mortality) at Day 60 and Day 90

Time: Baseline, Day 60, Day 90

34 Accuracy of Lung Ultrasound in the Diagnosis of covid19 Pneumonia: a Multicenter Study in the Italian Outbreak

Is Lung Ultrasound really useful in diagnosing COVID19? What can be the usefulness of the Lung Ultrasound in the COVID19 epidemic? In the current state of the art, Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) of Lung Ultrasound in the diagnosis of COVID-19 are not yet known. Alveolar-interstitial lung diseases such as viral pneumonia and ARDS seems to have a specific ultrasound pattern that distinguishes them from bacterial pneumonia, preferentially represented by B lines, morphological irregularity of the pleural line, and small subpleural consolidations, but they could share these patterns with other pathologies, reducing specificity. In Italy, the Lung Ultrasound represents a consolidated method for the evaluation and management of all patients who come to the ER, and what we are sure of is its high sensitivity in identifying pathological patterns. Our preliminary data suggest that Lung Ultrasound is highly reliable not to include but to exclude the diagnosis of COVID-19 in patients with respiratory symptoms.

NCT04370275 COVID-19 Pneumonia, Viral
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Lung Ultrasound accuracy in rule-out of patients with respiratory symptoms (fever and / or cough and / or dyspnoea) during the SARS-CoV-2 epidemic compared to nasopharyngeal swab and a composite reference standards

Measure: Negative Predictive Value of Lung Ultrasound in the diagnosis of COVID-19

Time: 30 days

Secondary Outcomes

Description: Lung Ultrasound accuracy in rule-in of patients with respiratory symptoms (fever and / or cough and / or dyspnoea) during the SARS-CoV-2 epidemic compared to nasopharyngeal swab and a composite reference standards

Measure: Positive Predictive Value of Lung Ultrasound in the diagnosis of COVID-19

Time: 30 days

Measure: Sensitivity and Specificity of Lung Ultrasound in the diagnosis of COVID-19

Time: 30 days

35 Early Short Course Corticosteroids in Hospitalized Patients With COVID-19

The investigators intend to study the role of early use of methylprednisolone in the hospitalized patients with a diagnosis of COVID-19 pneumonia.

NCT04374071 COVID Pneumonia, Viral Drug: Methylprednisolone
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Number of patients transferred to ICU is each of the groups

Measure: Transfer to Intensive care unit (ICU)

Time: 14 days followup for every patient in each group

Description: Number of patients that needed mechanical ventilation in each of the groups

Measure: Need for Mechanical Ventilation

Time: 14 days followup for every patient in each group

Description: Number of patients who died in each of the groups

Measure: Mortality

Time: 14 days followup for every patient in each group

Secondary Outcomes

Description: Number of patients who developed ARDS of varying severity per Berlin classification in each of the groups

Measure: Development and Severity of ARDS

Time: 14 days followup for every patient in each group

Description: LOS in each of the groups

Measure: Length of hospital stay (LOS).

Time: 14 days followup for every patient in each group

36 Single-center, Prospective, Open-label, Comparator Study, Blind for Central Accessor to Access the Efficacy, Safety, and Tolerability of Inhalations of Low-doses of Melphalan in Patients With Pneumonia With Confirmed or Suspected COVID-19

This single-center, prospective, open-label, comparator study, blind for central accessor evaluates the efficacy, safety of inhalations of low-doses of melphalan in patients with pneumonia with confirmed or suspected COVID-19. All patients will receive 0,1 mg of melphalan in 7-10 daily inhalations 1 time per day.

NCT04380376 COVID-19 Viral Pneumonia Drug: Melphalan Other: Standard of care
MeSH:Pneumonia, Viral Pneumonia Respiratory Aspiration
HPO:Pneumonia

Primary Outcomes

Description: The number of patients with the clinical improvement is defined as an improvement of two points (from the status at baseline) on an ordinal scale of clinical improvement on day 28 or discharge from hospital ( whatever occurs earlier) Death Hospitalized with Invasive mechanical ventilation plus additional organ support - ECMO / pressors / RRT Hospitalized with intubation and mechanical ventilation Hospitalized on non-invasive ventilation or high flow oxygen. Hospitalized on a mask or nasal prongs. Hospitalized no oxygen therapy. Ambulatory, with limitation of activities. Ambulatory, no limitation of activities. I. No clinical or virological evidence of infection.

Measure: The changes of COVID Ordinal Outcomes Scale

Time: baseline vs Day 14, day 28

Description: Percentage of the patients with clinical recovery which is defined as a normalisation of fever, respiratory rate, and oxygen saturation, and improvement of cough, sustained for at least 72 hours, or live hospital discharge, whichever comes first. Normalization and improvement criteria: Fever - <37°C, Respiratory rate - ≤24/minute on room air, Oxygen saturation - >94% on room air, Cough - mild or absent on a patient reported scale of severe, moderate, mild, absent.

Measure: Percentage of the patients with Clinical Recovery

Time: baseline vs day 7, day 14, day 28

Description: The evaluation of changes in modified Borg dyspnea scale. From 0 to 10 units.A lower score means a better clinical result (0 is the absence of dyspnea, and 10 - is maximal dyspnea). Minimal clinically important difference is 1 unit.

Measure: The changes of the Borg's scale

Time: Baseline vs day 7, day 14, day 28

Secondary Outcomes

Description: Change in C-reactive protein (CRP) level from baseline in mg/ml. A lower level of CRP means a better clinical result.

Measure: CRP level

Time: baseline, day 7, Day 14, Day 28

Description: Change in blood absolute lymphocyte count from baseline. A higher number of lymphocytes means a better clinical result.

Measure: Lymphocyte count

Time: baseline, day 7, Day 14, Day 28

Description: Change in blood D-dimer level from baseline. A lower level of D-dimer means a better clinical result.

Measure: D-dimer

Time: baseline, day 7, Day 14, Day 28

Description: Change in peripheral blood IL-6 level from baseline. A lower level of IL-6 means a better clinical result.

Measure: IL-6

Time: baseline, day 7, Day 14, Day 28

Description: Percentage of patients without artificial lung ventilation during the study. A lower percentage of patients means a better clinical result.

Measure: Percentage of patients without artificial lung ventilation

Time: baseline, day 7, Day 14, Day 28

37 Low Dose Anti-inflammatory Radiotherapy for the Treatment of Pneumonia by COVID-19: Multi-central Prospective Study

Low radiation doses produce anti-inflammatory effects, which may be useful in the treatment of respiratory complications of COVID-19. This type of treatment is non-invasive and therefore, a priori, it can be used in all types of patients. Main objective: To evaluate the efficacy of low-dose lung irradiation as an adjunctive treatment in interstitial pneumonia in patients with COVID-19 by improving the PAFI O2 by 20% measured 48h after treatment with respect to the pre baseline measurement. -irradiation.

NCT04380818 Pneumonia, Viral Radiation: Low-dose radiotherapy Drug: Hydroxychloroquine Sulfate Drug: Ritonavir/lopinavir Drug: Tocilizumab Injection [Actemra] Drug: Azithromycin Drug: Corticosteroid Drug: Low molecular weight heparin Device: Oxygen supply
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: To evaluate the efficacy of low-dose pulmonary irradiation as an adjunctive treatment in interstitial pneumonia in patients with COVID-19 by improving the PAFI O2 by 20% measured 48h after treatment with respect to baseline pre-irradiation measurement. . In cases of impossibility the SaFiO2 will be determined

Measure: Efficacy of low-dose pulmonary irradiation assessed by change in PAFI O2 by 20%

Time: Day 2 after interventional radiotherapy

Secondary Outcomes

Description: Lung toxicity measured according to CTCAEv5

Measure: Number of participants with treatment-related adverse events as assessed by CTCAE v5.0

Time: Day 30 and day 90 after interventional radiotherapy

Description: Chest CT

Measure: Change of the radiological image

Time: Days 7 and day 30 after interventional radiotherapy

Description: Death of any cause

Measure: Overall mortality

Time: Day 15 and Day 30 after interventional radiotherapy

Description: Interleukins IL-6, IL-10, IL-1, IL-2, IL-8 (pg/ml)

Measure: Measure of pro-inflammatory interleukins

Time: Days 1, day 4 and day 7 after interventional radiotherapy

Description: TGF-β (ng/ml)

Measure: Measure of trasforming growth factor (TGF-b)

Time: Days 1, day 4 and day 7 after interventional radiotherapy

Description: TNF-α (pg/ml)

Measure: Measure of tumor necrosis factor alpha (TNF-a)

Time: Days 1, day 4 and day 7 after interventional radiotherapy

Description: Overexpression of L-, E-, and P-selectin

Measure: Determining overexpression of pro-inflammatory selectin

Time: Days 1, day 4 and day 7 after interventional radiotherapy

Description: Overexpression of ICAM-1, VCAM

Measure: Determining cell adhesion molecules (CAMs)

Time: Days 1, day 4 and day 7 after interventional radiotherapy

Description: PON-1(paraoxonase and arylesterase activity) (IU/ml)

Measure: Measure of marker of oxidative stress PON-1

Time: Days 1, day 4 and day 7 after interventional radiotherapy

38 Inhalation of Ciclesonide for Patients With COVID-19: A Randomised Open Treatment Study (HALT COVID-19)

Randomized open label clinical trial carried out at study centers in Sweden, including Karolinska University Hospital Huddinge, S:t Göran Hospital, Danderyd Hospital and Västmanlands Hospital. Patients with COVID-19 who are hospitalized with oxygen therapy are eligible for inclusion. Subjects are randomized to 14 days of inhalation with ciclesonide 360 µg twice daily or to standard of care. Primary outcome is time (in days) of received supplemental oxygen therapy. Key secondary outcome is a composite outcome of death and received invasive mechanical ventilation within 30 days.

NCT04381364 Covid-19 Pneumonia, Viral ARDS ARDS, Human Sars-CoV2 Coronavirus Infection Corona Virus Infection Drug: Ciclesonide Inhalation Aerosol
MeSH:Infection Communicable Diseases Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Respiratory Distress Syndrome, Adult
HPO:Pneumonia

Primary Outcomes

Description: Time (in days) of received supplemental oxygen therapy (defined as being alive and discharged from hospital to home or at least 48 h of not receiving oxygen therapy during hospitalization).

Measure: Duration of received supplemental oxygen therapy

Time: 30 days after study inclusion

Secondary Outcomes

Description: Rate of and time to (in days) received invasive mechanical ventilation or all-cause death

Measure: Invasive mechanical ventilation or all-cause death

Time: 30 days after study inclusion

Description: Rate of and time to (in days) death of any cause

Measure: All cause death

Time: 30 days after study inclusion

Description: Rate of and time to (in days) received invasive mechanical ventilation

Measure: Invasive mechanical ventilation

Time: 30 days after study inclusion

Description: Maximum received oxygen therapy during hospitalization in liters per minute

Measure: Maximum oxygen therapy

Time: 30 days after study inclusion

Description: Time (in days) from study inclusion to discharge from hospital.

Measure: Duration of hospitalization

Time: 30 days after study inclusion

Description: Level of remaining dyspnea symptoms according to the Modified Medical Research Council Dyspnea Scale

Measure: Remaining dyspnea symptoms

Time: 3 and 6 months after inclusion. (Only for patients hospitalized at S:t Goran's Hospital)

39 High Flow Nasal Oxygen Versus Continuous Positive Airway Pressure Helmet Evaluation: A Randomized Crossover Trial in COVID-19 Pneumonia

The purpose of the COVIDNOCHE trial (HFNO versus CPAP Helmet Evaluation in COVID-19 Pneumonia) is to evaluate the comparative effectiveness of standard care non-invasive respiratory support (helmet CPAP versus HFNO) for acute hypoxemic respiratory failure from COVID-19 pneumonia on ventilator-free days (primary outcome) and other clinical outcomes measured up to 90 days.

NCT04381923 Severe Acute Respiratory Syndrome Coronavirus 2 Hypoxemic Respiratory Failure Pneumonia, Viral COVID Device: Helmet Continuous Positive Airway Pressure (CPAP) Device: High Flow Nasal Oxygen (HFNO)
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Respiratory Insuf Respiratory Insufficiency
HPO:Pneumonia

Primary Outcomes

Description: VFD is the number of days alive and free of mechanical ventilation in the first 28 days after study enrollment. Death before 28 days will be assigned a VFD equal to 0 to penalize non-survival. In cases of repeated intubation and extubation, periods free from invasive ventilation and lasting at least 24 consecutive hours will be calculated and summed. Timing of intubation and extubation will be captured in hours, and the number of hours a patient received invasive ventilation will be used to calculate duration of ventilation.

Measure: Ventilator-Free Days (VFD)

Time: 28 days

Secondary Outcomes

Description: Days spent in the ICU and hospital after time of enrollment

Measure: ICU and Hospital Length of Stay

Time: 28 days

Description: Incidence and time to intubation in days after the time of enrollment

Measure: Intubation

Time: 28 days

Description: Incidence of RRT after the time of enrollment

Measure: Renal Replacement Therapy (RRT)

Time: 28 days

Description: Death from any cause during after the time of enrollment

Measure: Mortality

Time: 28 days, 90 days

40 Treatment of Covid-19 Associated Pneumonia With Allogenic Pooled Olfactory Mucosa-derived Mesenchymal Stem Cells

Treatment of patients with Covid-19 associated pneumonia using intravenous injection of allogenic pooled olfactory mucosa-derived mesenchymal stem cells

NCT04382547 COVID Covid-19 Coronavirus Pneumonia Pneumonia, Viral Pneumonia, Interstitial Sars-CoV2 Biological: Allogenic pooled olfactory mucosa-derived mesenchymal stem cells Other: Standard treatment according to the Clinical protocols
MeSH:Pneumonia, Viral Pneumonia Lung Diseases, Interstitial
HPO:Interstitial pneumonitis Interstitial pulmonary abnormality Pneumonia

Primary Outcomes

Description: Number of patients cured, assessed by PCR in addition to chest CT scan

Measure: Number of cured patients

Time: 3 weeks

Secondary Outcomes

Description: MSC infusion related adverse events assessed by blood count, liver and function tests

Measure: Number of patients with treatment-related adverse events

Time: 3 weeks

41 Predicting Outcomes for Covid-19 Using Sonography

This study seeks to investigate the role of lung ultrasound in caring for Covid-19 positive patients and whether it can be used to predict patient deterioration. This information will be vital for healthcare workers who seek to identify Covid-19 pneumonia or patients at risk for deterioration early in the disease course.

NCT04384055 COVID-19 Pneumonia, Viral Diagnostic Test: Lung Ultrasound
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Composite primary outcome of death, ICU admission, mechanical ventilation, or use of high-flow nasal cannula (categorical)

Measure: Number of Patients Experiencing Death, ICU Admission, Mechanical Ventilation, or Use of High-Flow Nasal Cannula

Time: 28 days from initial evaluation

Secondary Outcomes

Measure: Number of Patients Requiring Mechanical Ventilation

Time: 28 days from initial evaluation

Measure: Number of Patients Requiring Supplemental Oxygen Usage

Time: 28 days from initial evaluation

Measure: Duration of Supplemental Oxygen Usage

Time: 28 days from initial evaluation

Description: Duration of Hospitalization (days)

Measure: Length of Stay

Time: 28 days from initial evaluation

Description: Descriptive analysis of ultrasound findings in Covid-19

Measure: Characterization of Ultrasound Findings

Time: 28 days from initial evaluation

42 Use of High Flow Nasal Cannula Oxygen During Acute Hypoxemic Respiratory Failure Related to Covid-19 and Interest of the Respiratory-oxygenation Index (ROX Index): an Observational Study

Nasal High Flow oxygen therapy (NHF) is commonly used as first line ventilatory support in patients with acute hypoxemic respiratory failure (AHRF). It's use has been initially limited in Covid-19 patients presenting with AHRF. The aim of the study is to describe the use of NHF in Covid-19-related AHRF and report the changes in the respiratory-oxygenation index (termed ROX index) over time in these patients.

NCT04385823 Respiratory Syndrome, Acute, Severe Hypoxic Respiratory Failure Viral Pneumonia Device: patients receiving nasal high flow
MeSH:Pneumonia, Viral Severe Acute Respiratory Syndrome Coronavirus Infections Pneumonia Respiratory Insufficiency
HPO:Pneumonia

Primary Outcomes

Description: values of ROX index during ICU stay

Measure: Changes in ROX index

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

Secondary Outcomes

Description: percentage of patients requiring intubation

Measure: NHF failure

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

Description: level of flow used with NHF

Measure: NHF flow

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

Description: level of inspired fraction in oxygen used with NHF

Measure: NHF inspired fraction in oxygen

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

Description: level of pulse oxymetry during NHF therapy

Measure: oxygenation

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

Description: respiratory rate during NHF therapy

Measure: respiratory status

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

Description: defining the values of ROX index associated with intubation

Measure: prediction of intubation

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

Description: defining the values of ROX index associated with NHF success (no intubation required)

Measure: prediction of NHF success

Time: from date of NHF initiation until date of weaning from NHF or date of intubation whichever came first, assessed up to 2 months

43 Major Determinants of COVID-19 Associated Pneumonia

Molecular testing (e.g PCR) of respiratory tract samples is the recommended method for the identification and laboratory confirmation of COVID-19 cases. Recent evidence reported that the diagnostic accuracy of many of the available RT-PCR tests for detecting SARS-CoV2 may be lower than optimal. Of course, the economical and clinical implications of diagnostic errors are of foremost significance and in case of infectious outbreaks, namely pandemics, the repercussions are amplified. False positives and false-negative results may jeopardize the health of a single patient and may affect the efficacy of containment of the outbreak and of public health policies. In particular, false-negative results contribute to the ongoing of the infection causing further spread of the virus within the community, masking also other potentially infected people.

NCT04387799 Pneumonia, Viral Pneumonia, Bacterial Coronavirus Infection Obstructive Lung Disease Diagnostic Test: Serology for Covid-19
MeSH:Pneumonia, Bacterial Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Lung Diseases Lung Diseases, Obstructive
HPO:Abnormal lung morphology Pneumonia Pulmonary obstruction

Primary Outcomes

Description: assess if inpatients who presented with pneumonia but had a negative test for Covid-19 are positive at the serology for SARS-CoV-2.

Measure: Serology

Time: 3 weeks

Secondary Outcomes

Description: to find if the combination of CT scan and serology could help us in the identification of those patients who were initially negative at laboratory testing alone.

Measure: Efficacy of CT scan and Serology

Time: 3 weeks

Description: the efficacy of different pharmaceutical treatments against Covid-19

Measure: Efficacy of different pharmaceutical treatments

Time: 3 weeks

44 Study of the Prevalence of Deep Vein Thrombosis in Patients Hospitalized in Intensive Care for Acute Respiratory Failure Linked to Pneumonia Documented With SARS-COV2

Coronavirus 2 (SARS-CoV2) has been identified as the pathogen responsible for severe acute respiratory syndrome associated with severe inflammatory syndrome and pneumonia (COVID-19). Haemostasis abnormalities have been shown to be associated with a poor prognosis in these patients with this pneumonia. In a Chinese series of 183 patients, the hemostasis balance including thrombin time, fibrinogenemia, fibrin degradation products and antithrombin III were within normal limits. Only the D-Dimer assay was positive in the whole cohort with an average rate of 0.66 µg / mL (normal <50 µg / mL). These hemostasis parameters were abnormal mainly in patients who died during their management; the levels of D-dimers and fibrin degradation products were significantly higher while the antithrombin III was reduced. The findings on the particular elevation of D-dimers in deceased patients as well as the significant increase in thrombin time were also reported in another series. Higher numbers of pulmonary embolisms have been reported in patients with severe form of SARS-COV2 (data in press). This research is based on the hypothesis that the existence of deep vein thrombosis (DVT) could make it possible to screen patients at risk of pulmonary embolism and to set up a curative anticoagulation. The main objective is to describe the prevalence of deep vein thrombosis in patients hospitalized in intensive care for acute respiratory failure linked to documented SARS-COV2 pneumonia, within 24 hours of their admission.

NCT04388657 COVID Embolism and Thrombosis Pneumonia, Viral Diagnostic Test: Echo-Doppler
MeSH:Pneumonia, Viral Pneumonia Thrombosis Embolism Embolism and Thrombosis
HPO:Pneumonia Thromboembolism

Primary Outcomes

Description: The primary outcome measure will be the percentage of patients with one or more DVTs from a lower extremity ultrasound scan.

Measure: percentage of patients with one or more DVTs.

Time: 28 days

45 COVID-19 Imaging Features

The novel coronavirus SARS-CoV2 clinically presents with pneumonia, characterised by fever, cough, dyspnea. The severity of the disease varies widely with evidence of mild disease in the majority of confirmed cases, severe pneumonia-dyspnea, hypoxia or lung involvement at imaging within 24-48 hours- and critical disease with respiratory failure, shock or multi-organ failure in particular patient cohorts. Imaging plays a key role is diagnosis and progression of this disease.

NCT04394026 Viral Pneumonia COVID
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Evaluate RX imaging aspects at the time of diagnosis and until discharge.

Measure: Describe qualitative and quantitative variables

Time: Through study completion, an average of 5 months

Description: Evaluate CT imaging aspects at the time of diagnosis and until discharge.

Measure: Describe qualitative and quantitative variables

Time: Through study completion, an average of 5 months

Description: Correlate imaging findings to OS

Measure: Ability of imaging to predict disease progression

Time: Through study completion, an average of 5 months

Description: Correlate imaging findings over time

Measure: Ability of imaging to predict disease evolution

Time: Through study completion, an average of 5 months

Secondary Outcomes

Description: Correlate imaging findings to age and sex

Measure: Imaging findings and demographic data

Time: Through study completion, an average of 5 months

Description: Correlate imaging findings to laboratory values

Measure: Imaging findings and laboratory exams

Time: Through study completion, an average of 5 months

46 Low Doses of Lung Radiation Therapy in Cases of COVID-19 Pneumonia: Prospective Multicentric Study in Radiation Oncology Centers

The host response against the coronavirus 2 (SARS-CoV-2) appears to be mediated by a 'cytoquine storm' developing a systemic inflammatory mechanism and an acute respiratory distress syndrome (ARDS), in the form of a bilateral pneumonitis, requiring invasive mechanical ventilation (IMV) in an important group of patients. In terms of preventing progression to the critical phase with the consequent need of admission to the intensive care units (ICU), it has been recently proposed that this inflammatory cytoquine-mediated process can be safely treated by a single course of ultra-low radiotherapy (RT) dose < 1 Gy. The main purpose of the study was to analyze the efficacy of ultra low-dose pulmonary RT, as an anti-inflammatory intention in patients with SARS-Cov-2 pneumonia with a poor or no response to standard medical treatment and without IMV.

NCT04394182 Pneumonia, Viral Cytokine Storm Radiation: Ultra-Low-dose radiotherapy Device: ventilatory support with oxygen therapy Drug: Lopinavir/ritonavir Drug: Hydroxychloroquine Drug: Azithromycin Drug: Piperacillin/tazobactam Drug: Low molecular weight heparin Drug: Corticosteroid injection Drug: Tocilizumab
MeSH:Pneumonia, Viral Pneu Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation.It was performed by oxygen therapy status assessment after RT treatment. Improvement criteria is considered as an oxygen therapy de-escalation (more to less need for support: Ventimask (VMK) with reservoir >VMK >Nasal Cannula-(NC).)

Measure: Oxygen Therapy Status at Day 2

Time: At 2 after RT

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation. .It was performed by oxygen saturation (Sat02 %) status assessment after RT treatment. Improvement criteria is considered as a Sat02 with/without oxygen therapy >93% (Pulse oximeter measurement)

Measure: Oxygen Saturation (Sat02; Pulse oximeter measurement) at Day 2

Time: At 2 days after RT

Secondary Outcomes

Description: Pa02 / Fi02 > 300 mmHg

Measure: Blood Gas Analysis at Day 2

Time: At 2 days after RT

Description: Achievement of normal range value in 1 or more of the inflammatory and immunological parameters (lymphocytes, IL-6, D-dimer, ferritin, LDH, C Reactive Protein (CRP) and fibrinogen)

Measure: Blood Test at Day 2

Time: At 2 days after RT

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation.It was performed by oxygen therapy status assessment after RT treatment. Improvement criteria is considered as an oxygen therapy de-escalation (more to less need for support: Ventimask (VMK) with reservoir >VMK >Nasal Cannula-(NC).)

Measure: Oxygen Therapy Status at Day 5

Time: At 5 after RT

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation. .It was performed by oxygen saturation (Sat02 %) status assessment after RT treatment. Improvement criteria is considered as a Sat02 with/without oxygen therapy >93% (Pulse oximeter measurement)

Measure: Oxygen Saturation (Sat02; Pulse oximeter measurement) at Day 5

Time: At 5 days after RT

Description: Achievement of normal range value in 1 or more of the inflammatory and immunological parameters (lymphocytes, IL-6, D-dimer, ferritin, LDH, C Reactive Protein (CRP) and fibrinogen)

Measure: Blood Test at Day 5

Time: At 5 days after RT

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation.It was performed by oxygen therapy status assessment after RT treatment. Improvement criteria is considered as an oxygen therapy de-escalation (more to less need for support: Ventimask (VMK) with reservoir >VMK >Nasal Cannula-(NC).)

Measure: Oxygen Therapy Status at Day 7

Time: At 7 after RT

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation. .It was performed by oxygen saturation (Sat02 %) status assessment after RT treatment. Improvement criteria is considered as a Sat02 with/without oxygen therapy >93% (Pulse oximeter measurement)

Measure: Oxygen Saturation (Sat02; Pulse oximeter measurement) at Day 7

Time: At 7 days after RT

Description: Achievement of normal range value in 1 or more of the inflammatory and immunological parameters (lymphocytes, IL-6, D-dimer, ferritin, LDH, C Reactive Protein (CRP) and fibrinogen)

Measure: Blood Test at Day 7

Time: At 7 days after RT

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through radiological evaluation.It was performed by thoracic CT scan after RT treatment . It is considered a radiological improvement the decrease of the Total Severity Score (TSS) from the baseline in > or = 1 point. NOTE: The score values ranged from 0 to 4 according to the sum of the percentage involvement of each of the 5 lung lobes. The total severity score (TSS), was reached by summing the overall involvement in the lung (0-20 points)

Measure: Change from baseline Total Severity Score (TSS) analyzed in a thoracic CT scan at Day 7

Time: At 7 days after RT

Description: Recovery time after RT administration until hospital discharge or death (<48h; 2-7 days; >7 days; clinical worsening or death)

Measure: Recovery time

Time: From RT administration until hospital discharge or death

Description: COVID-19 negativization test

Measure: COVID-19 status

Time: At 7 days after RT

Description: To evaluate the efficacy of ultra low-dose pulmonary RT through radiological evaluation.It was performed by thoracic CT scan after RT treatment . It is considered a radiological improvement the decrease of the Total Severity Score (TSS) from the baseline in > or = 1 point. NOTE: The score values ranged from 0 to 4 according to the sum of the percentage involvement of each of the 5 lung lobes. The total severity score (TSS), was reached by summing the overall involvement in the lung (0-20 points)

Measure: Change from baseline Total Severity Score (TSS) analyzed in a thoracic CT scan al Month 1

Time: At 1 month after RT

Description: Toxicity was assessed and rated according to the NIH Common Terminology Criteria for Adverse Events (CTCAE version 5.0) and RTOG scales.

Measure: Acute Toxicity

Time: 1-3 months after RT

47 Trial of Silymarin in Adults With COVID-19 Pneumonia

A randomized placebo controlled trial to assess the clinical outcome in COVID-19 Pneumonia following administration of Silymarin owing to its role as a p38 MAPK pathway inhibitor and its antiviral, anti-inflammatory and anti-oxidant effects

NCT04394208 COVID-19 Viral Pneumonia Human Coronavirus Drug: Silymarin Drug: Placebo
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Defined as the time from randomization to an improvement of two points (from the status of randomization) on seven category ordinal scale or live discharge from the hospital, whichever comes first.

Measure: Time to clinical improvement

Time: 7-28 days

Secondary Outcomes

Description: Clinical status as assessed with the seven-category ordinal scale on days 7 and 14

Measure: Clinical outcome

Time: 7-14 days

Description: Time in days patient was intubated

Measure: Duration of Mechanical Ventilation

Time: Randomization till hospital discharge or death whichever came first, assessed up to 28 days

Description: Total days of hospitalization

Measure: Hospitalization

Time: Randomization till hospital discharge or death whichever came first, assessed up to 28 days

Description: number of days patient remained with positive RT-PCR SARS-CoV-2 swab

Measure: Virologic Response

Time: Randomization till discharge, up to 28 days

Description: Any adverse events whether related to medication or not

Measure: Adverse events

Time: Randomization till hospital discharge, up to 28 days

48 A Randomized, Double Blind, Placebo-controlled Trial of Mavrilimumab for Acute Respiratory Failure Due to COVID-19 Pneumonia With Hyper-inflammation (the COMBAT-19 Trial)

This study is a prospective, phase II, multi-center, randomized, double-blind, placebo-controlled trial to evaluate the efficacy and safety of mavrilimumab in hospitalized patients with acute respiratory failure requiring oxygen supplementation in COVID- 19 pneumonia and a hyper-inflammatory status. The study will randomize patients to mavrilimumab or placebo, in addition to standard of care per local practice. The total trial duration will be 12 weeks after single mavrilimumab or placebo dose.

NCT04397497 Covid-19 Acute Respiratory Failure ARDS, Human Sars-CoV2 Viral Pneumonia Drug: Mavrilimumab Drug: Placebo
MeSH:Pneumonia, Viral Pneumonia Respiratory Insufficiency Respiratory Distress Syndrome, Adult Inflammation
HPO:Pneumonia

Primary Outcomes

Description: Time to the absence of need for oxygen supplementation (time to first period of 24 hrs with a SpO2 of 94%) within day 14 of treatment, stated as Kaplan- Mayer estimates of the proportion of patients on room air at day 14 and median time to room air attainment in each arm

Measure: Reduction in the dependency on oxygen supplementation

Time: within day 14 of treatment

Secondary Outcomes

Description: Response is defined as a 7-point ordinal scale of 3 or less, i.e. no supplemental oxygen

Measure: Proportion of responders (using the WHO 7-point ordinal scale)

Time: Day 7, 14, and 28

Description: Time from date of randomization to the date with a 7-point ordinal scale of 3 or less, i.e. no supplemental oxygen

Measure: Time to response (using the WHO 7-point ordinal scale)

Time: Within day 28 of intervention

Description: Proportion of patients with at least two-point improvement in clinical status

Measure: Proportion of improving patients (using the WHO 7-point ordinal scale)

Time: At day 7, 14, and 28

Description: Time to resolution of fever (for at least 48 hours) in absence of antipyretics, or discharge, whichever is sooner

Measure: Time to resolution of fever

Time: Within day 28 of intervention

Description: COVID-19-related death

Measure: Reduction in case fatality

Time: Within day 28 of intervention

Description: Proportion of hospitalized patients who died or required mechanical ventilation (WHO Categories 6 or 7)

Measure: Proportion of patient requiring mechanical ventilation/deaths

Time: Within day 14 of intervention

Description: Change of the following serological markers over follow-up (C-reactive protein; Ferritin; D-Dimer)

Measure: Change in biochemical markers

Time: Within day 28 of intervention or discharge -whatever comes first

Description: Median changes of NEWS2 score from baseline

Measure: Median changes in the National Early Warning Score 2 (NEWS2)

Time: At day 7, 14, and 28

Description: Time to clinical improvement (as defined as a NEWS2 score of 2 or less maintained for at least 24 hours or discharge, whichever comes first)

Measure: Time to clinical improvement as evaluated with the National Early Warning Score 2 (NEWS2)

Time: Within day 28 of intervention or discharge -whatever comes first

Description: Variations from baseline to subsequent timepoints (when available) in terms of percentage of lung involvement, modifications in the normal parenchyma, ground glass opacities (GGO), crazy paving pattern,parenchymal consolidations, and evolution towards fibrosis.

Measure: Variations in radiological findings

Time: Within day 28 of intervention or discharge -whatever comes first

Description: Number of patients with treatment- related side effects (as assessed by Common Terminology Criteria for Adverse Event (CTCAE) v.5.0), serious adverse events, adverse events of special interest, clinically significant changes in laboratory measurements and vital signs

Measure: Incidence of Treatment-Emergent Adverse Events [Safety and Tolerability]

Time: By day 84

Other Outcomes

Description: To evaluate the primary and secondary endpoints in different subgroups of patients: mild respiratory failure: PaO2/FiO2 ≤ 300 and > 200 mmHg; moderate respiratory failure: PaO2/FiO2 ≤ 200 and > 100 mmHg

Measure: Clinical efficacy of mavrilimumab compared to the control arm by clinical severity

Time: Within day 28 of intervention

Description: Median changes in serum IL-6

Measure: Changes in serum IL-6 (exploratory biomarker)

Time: By day 84

Description: Median changes in serum IL-1 receptor antagonist

Measure: Changes in serum IL-1RA (exploratory biomarker)

Time: By day 84

Description: Median changes in serum TNF-alpha

Measure: Changes in serum TNF-alpha (exploratory biomarker)

Time: By day 84

Description: Median variations in haemoglobin and leucocyte counts

Measure: Changes in CBC + differential (exploratory biomarker)

Time: By day 84

Description: Median titres od anti-SARS-CoV2 antibodies

Measure: Level of anti-SARS-CoV2 antibodies (exploratory biomarker)

Time: By day 84

Description: Proportion of patients with a positive swab for SARS-CoV2 by PCR

Measure: Virus eradication (exploratory biomarker)

Time: By day 84

Description: Proportion of patients who developed anti-drug antibodies

Measure: Anti-drug antibodies (exploratory biomarker)

Time: By day 84

49 Inhaled NO for the Treatment of COVID-19 Caused by SARS-CoV-2 (US Trial)

The purpose of this open label, randomized, study is to obtain information on the safety and efficacy of 80 ppm Nitric Oxide given in addition to the standard of care of patients with COVID-19 caused by SARS-CoV-2.

NCT04397692 Corona Virus Infection COVID-19 SARS-CoV 2 Nitric Oxide Respiratory Disease Pneumonia, Viral Inhaled Nitric Oxide Device: Nitric Oxide delivered via LungFit™ system
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Respiratory Aspiration Respiration Disorders Respiratory Tract Diseases
HPO:Pneumonia

Primary Outcomes

Description: Time to deterioration measured by need for NIV, HFNC or intubation

Measure: Time to deterioration

Time: 14 Days

Secondary Outcomes

Description: Time to non-invasive ventilation

Measure: Time to NIV

Time: 14 Days

Description: Time to high flow nasal cannula

Measure: Time to HFNC

Time: 14 Days

Description: Time to intubation

Measure: Time to intubation

Time: 14 days

Description: Time to patient having stable oxygen saturation (SpO2) of greater than or equal to 93%

Measure: Time to patient having stable oxygen saturation (SpO2) of greater than or equal to 93%

Time: 14 days

Other Outcomes

Description: Need for supplemental oxygen

Measure: Need for supplemental oxygen

Time: 14 days

Description: Change in viral load

Measure: Change in viral load

Time: 30 days

Description: Duration of the Hospital Length of Stay (LOS)

Measure: Duration of the Hospital Length of Stay (LOS)

Time: 14 days

Description: Mortality rate at Day 30

Measure: Mortality rate at Day 30

Time: 30 days

50 The Utility of Bedside Lung Ultrasonography on Diagnosis of COVID-19 at Emergency Department

Novel Coronavirus 2019 Disease (COVID-19) mortality is highly associated with viral pneumonia and its complications. Accurate and prompt diagnosis shown to be effective to improve outcome by providing early treatment strategies. While chest X-ray (CXR) and computerized tomography (CT) are defined as gold standard, given the advantage of being an ionized radiation free, practical technique point of care ultrasound (POCUS) is also reported as a diagnostic tool for COVID-19. There are limited studies regarding the importance of POCUS in diagnosis and review of COVID-19. Therefore the aim of this study is to evaluate the utility of bedside lung ultrasound on diagnosis of COVID-19 for patients admitted to emergency department .

NCT04399681 COVID Pneumonia, Viral Device: Bedside lung ultrasound
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Efficacy of POCUS on diagnosis of viral pneumonia caused by COVID 19

Measure: Presence of viral pneumonia caused by COVID 19

Time: 3 months

51 Development and Validation of Predictive Models for Intensive Care Admission and Death of COVID-19 Patients in a Secondary Care Hospital in Belgium.

To build simple and reliable predictive scores for intensive care admissions and deaths in COVID19 patients. These scores adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guidelines. The outcomes of the study are (i) admission in the Intensive Care Unit admission and (ii) death. All patients admitted in the Emergency Department with a positive reverse transcription‐polymerase chain reaction SARS-COV2 test were included in the study. Routine clinical and laboratory data were collected at their admission and during their stay. Chest X-Rays and CT-Scans were performed and analyzed by a senior radiologist. Generalized Linear Models using a binomial distribution with a logit link function (R software version X) were used to develop predictive scores for (i) admission to ICU among emergency ward patients; (ii) death among ICU patients. A first panel of Number Models with the highest AIC (BIC) was preselected. Ten-fold cross-validation was then used to estimate the out-of-sample prediction error among these preselected models. The one with the smallest prediction error was in the end singled out .

NCT04401228 COVID19 Pneumonia, Viral Inflammatory Response Other: predict admission of covid-19 patients to ICU and death with routine and quickly avalaible clinical, biological and radiological variables?
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Measure: admission to ICU

Time: through study completion, an average of 1 year

Secondary Outcomes

Measure: death

Time: through study completion, an average of 1 year

52 Randomised Controlled Trial Comparing High Versus Low LMWH Dosages in Hospitalized Patients With Severe COVID-19 Pneumonia and Coagulopathy Not Requiring Invasive Mechanical Ventilation

Randomized, controlled study conducted in hospitalized patients with severe COViD-19 pneumonia and coagulopathy not requiring invasive mechanical ventilation. Aim of this study is to assess whether high doses of Low Molecular Weight Heparin (LMWH) (ie. Enoxaparin 70 IU/kg twice daily) compared to standard prophylactic dose (ie, Enoxaparin 4000 IU once day) are: 1. More effective to prevent clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first, during hospital stay: 1. Death 2. Acute Myocardial Infarction [AMI] 3. Objectively confirmed, symptomatic arterial or venous thromboembolism [TE] 4. Need for either non-invasive - Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) - or invasive mechanical ventilation for patients who are in standard oxygen therapy by delivery interfaces at randomisation 5. Need for invasive mechanical ventilation for patients who are in non-invasive mechanical ventilation at randomisation 2. Similar in terms of major bleeding risk during hospital stay

NCT04408235 COVID Pneumonia, Viral Coagulation Disorder Drug: Enoxaparin
MeSH:Pneumonia, Viral Pneumonia Hemostatic Disorders Blood Coagulation Disorders
HPO:Abnormality of coagulation Abnormality of the coagulation cascade Pneumonia

Primary Outcomes

Description: Death Acute Myocardial Infarction [AMI] Objectively confirmed, symptomatic arterial or venous thromboembolism [TE] Need for either non-invasive - Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) - or invasive mechanical ventilation for patients, who are in standard oxygen therapy by delivery interfaces at randomisation Need for invasive mechanical ventilation for patients, who are in non-invasive mechanical ventilation at randomisation

Measure: Clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first:

Time: through study completion, up to 30 days

Secondary Outcomes

Description: Death Acute Myocardial Infarction [AMI] Objectively confirmed, symptomatic arterial or venous thromboembolism [TE] Need for either non-invasive - Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) - or invasive mechanical ventilation for patients, who are in standard oxygen therapy by delivery interfaces at randomisation Need for invasive mechanical ventilation for patients, who are in non-invasive mechanical ventilation at randomisation Improvement of laboratory parameters of disease severity, including: D-dimer level Plasma fibrinogen levels Mean Platelet Volume Lymphocyte/Neutrophil ratio IL-6 plasma levels

Measure: Any of the following events occurring within the hospital stay

Time: through study completion, up to 30 days

Description: Information about patients' status will be sought in those who are discharged before 30 days on Day 30 from randomisation.

Measure: Mortality at 30 days

Time: 30 days

53 Phase II Study of Low Dose Pulmonary Irradiation in Patients With COVID-19 Infection of Bad Prognosis

The administration of low-dose lung irradiation produces anti-inflammatory effects that will decrease the pulmonary inflammatory response. The present study will evaluate the efficacy of treatment with low-dose pulmonary radiotherapy added to standard support therapy, in hospitalized patients with respiratory symptoms due to COVID-19 pneumonia, who do not experience improvement with conventional medical therapy and are not subsidiaries of ICU

NCT04414293 COVID Pneumonia, Viral Radiation: Lung Low Dose Radiation
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Clinical improvement of respiratory symptoms due to COVID-19 pneumonia after the treatment, measured as blood oxygen saturation levels

Measure: blood oxygen saturation level

Time: 48 hours

Description: radiological improvement of respiratory symptoms due to COVID-19 pneumonia after the treatment.

Measure: Torax X-ray

Time: 48 hours

Secondary Outcomes

Description: number of days of hospital stay.

Measure: Hospitalization

Time: 2 months

Description: Number of days free of assisted mechanical respiration.

Measure: days free of assisted mechanical respiration

Time: 3 month

Description: number of deaths

Measure: Mortality

Time: 3 months

54 A Pilot Study to Explore the Efficacy and Safety of Rescue Therapy With Antibodies From Convalescent Patients Obtained With Double-filtration Plasmapheresis (DFPP) and Infused in Patients With Coronavirus Disease 2019 (COVID-19) and Need of Oxygen Support Without Mechanical Ventilation

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, has become a major concern all over the world. Convalescent plasma or immunoglobulins have been used as a last resort to improve the survival rate of patients with SARS whose condition continued to deteriorate despite treatment with pulsed methylprednisolone. Moreover, several studies showed a shorter hospital stay and lower mortality in patients treated with convalescent plasma than those who were not treated with convalescent plasma. Evidence shows that convalescent plasma from patients who have recovered from viral infections can be used effectively as a treatment of patients with active disease. The use of solutions enriched of antiviral antibodies has several important advantages over the convalescent plasma including the high level of neutralizing antibodies supplied. Moreover, plasma-exchange is expensive and requires large volumes of substitution fluid With either albumin or fresh frozen plasma, increasing the risk of cardiovascular instability in the plasma donor and in the recipient, which can be detrimental in a critically ill patient with COVID 19 pneumonia. The use of plasma as a substitution fluid further increases treatment costs and is associated with risk of infections, allergic reactions and citrate-induced hypocalcemia. Albumin is better tolerated and less expensive, but exchanges using albumin solutions increase the risk of bleeding because of progressive coagulation factor depletion. The aforementioned limitations of plasma therapy can be in part overcome by using selective apheresis methods, such as double-filtration plasmapheresis (DFPP)3. During DFPP, plasma is separated from cellular components by a plasma filter, and is then allowed to pass through a fractionator filter. Depending on the membrane cut-off, the fractionator filter retains larger molecules and returns fluid along with smaller molecules to the circulation. Thus, the selection of a membrane with an appropriate sieving coefficient for IgG allows to efficiently clear autoantibodies in patients with antibody-mediated diseases (e.g., macroglobulinemia, myasthenia gravis and rheumatoid arthritis) with negligible fluid losses and limited removal of albumin and coagulation factors1. In patients with severe membranous nephropathy and high titer of autoreactive, nephritogenic antibodies against the podocyte-expressed M type phospholipase A2 receptor (PLA2R), DFPP accelerated anti PLA2R depletion4. Measurement of the antibody titer in treated patient and recovered fluid showed that antibody removal was extremely effective and that large part of antibodies was removed during the first DFPP procedure. This therapeutic regimen was safe and well tolerated and easy to apply4. In an ongoing pilot study we found that the same methodological approach can be used to remove circulating antibodies from patients who recovered from COVID 19 and to infuse these antibodies in patients with active viral infection. Treatment was well tolerated and preliminary findings are encouraging. Thus, in this novel pilot study we aim to explore whether the infusion of antibodies obtained with one single DFPP procedure from voluntary convalescent donors could offer an effective and safe therapeutic option for patients with earlier stages of coronavirus (COVID-19) pneumonia requiring oxygen supply without mechanical ventilation.

NCT04418531 Pneumonia, Viral Corona Virus Infection Biological: Anti-coronavirus antibodies (immunoglobulins) obtained with DFPP form convalescent patients
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Measure: Time to weaning of oxygen support

Time: Through study completion, an average of 3 months

Secondary Outcomes

Measure: Chest XR or CT scan evaluation

Time: Changes during the study up completion, an average of 3 months

Measure: Survival,

Time: Through study completion, an average of 3 months

Measure: Viral titer

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Measure: Anti COVID 19 IgG antibodies

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Measure: Anti COVID 19 IgM antibodies

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: C5a concentration

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: C3a concentration

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum C5b-9 concentration Marker of complement activation

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum IL-6 levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum IL-1b levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum IFNγ levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum MCP-1 levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum TNFα levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum IL-10 levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum IL-2 levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

Description: Marker of complement activation in plasma.

Measure: Serum IL-7 levels

Time: Changes from before Ig administration, one day after Ig administration and every week through study completion, an average of 3 months.

55 Characterization of Persistent Pulmonary Abnormalities Following COVID-19 Pneumonia

Severe Acute Respiratory Syndrome SARS-CoV-2, name of the Coronavirus Group of international Committee on taxonomy of viruses, is an emerging virus from the family of coronaviridae, responsible for the COVID-19 pandemic. This infection can progress to viral pneumonia, and in 3% of cases up to acute respiratory distress syndrome (ARDS) which conditions the prognosis of the disease. Due to its unusual clinical presentation with a risk of sudden deterioration on the 8th day as a result of possible hyperinflammatory response, the respiratory impairment of COVID is unique and many questions remain unanswered concerning its evolution once the acute phase has passed. Knowledge of the evolution of pulmonary involvement, particularly in patients requiring hospitalization, can help reduce the morbidity linked to the persistent abnormalities identified by establishing early therapeutic management. It can also provide a better understanding of the mechanisms of pulmonary involvement in the acute phase. Current data regarding the acute phase of COVID-19 suggest that persistent abnormalities remain distant from this infection at all levels of the respiratory system: gas exchange, perfusion, ventilatory mechanics, and interstitial lung disease. The main objective is to characterize persistent gas exchange anomalies 4 months after documented COVID-19 pneumonia, resulting in oxygen desaturation and requiring hospitalization.

NCT04422613 Pneumonia, Viral Diagnostic Test: pulmonary anomalies 4 months after documented COVID-19 pneumonia
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Alteration of the DLCO test defined by a corrected DLCO value <70% of theoretical and / or desaturation in the 6 Minute Walk Test (loss of 4% or more of SpO2)

Measure: Alteration of the DLCO

Time: 4 month

Secondary Outcomes

Description: The mechanism of the alteration of gas exchanges will be specified by the analysis of the values obtained during the diffusing CO / NO test, at 4 month after COVID- 19 pneumonia

Measure: Mechanism of the alteration of gas exchanges

Time: 4 month

Description: The mechanism of the alteration of gas exchanges will be specified by the analysis of the other values obtained during the measurement of lung volumes in respiratory function tests at 4 month after COVID- 19 pneumonia

Measure: Measurement on lung volumes

Time: 4 month

Description: The mechanism of the alteration of gas exchanges will be specified by the analysis of the other values obtained during chest CT-scan at 4 month after COVID- 19 pneumonia

Measure: mechanism of the alteration of gas exchanges by chest scan

Time: 4 month

Description: The mechanism of the alteration of gas exchanges identified will be specified by the analysis of the other values obtained during pulmonary scintigraphy, at 4 month after COVID- 19 pneumonia :

Measure: mechanism of the alteration of gas exchanges by scintigraphy

Time: 4 month

Description: the existence of respiratory symptoms, defined by dyspnea, cough, sputum, haemoptysis, chest pain, sign of right ventricular failure, sleep disorders or a 6-minute walk test value <80% of theoretical, at 4 month after COVID- 19 pneumonia

Measure: Respiratory symptom

Time: 4 month

Description: the existence of persistent bronchial or ventilatory anomalies at 4 months, defined on current respiratory function tests (plethysmography, forced oscillometry test, diaphragmatic explorations, measurement of exhaled NO)

Measure: Bronchial or ventilatory anomalies

Time: 4 month

Description: Persistent respiratory anomalies at 4 months will be evaluated at 12 months of the acute episode by an appropriate paraclinical assessment : mechanism of the alteration of gas exchanges, Respiratory symptom and bronchial or ventilatory anomalies will be evaluated

Measure: Persistent respiratory anomalies

Time: 12 month

56 Bruk av Ultralyd i Evaluering av Pasienter Med Mistenkt COVID-19 Infeksjon i Norge

In light of the ongoing COVID-19 epidemic in Norway, it is paramount to develop and utilize clinical tools for assessing and risk stratifying patients with suspected coronary infection in the emergency departments. Diagnostic use of ultrasound in viral pneumonias, including COVID-19 has proved to be very useful. The use of ultrasound will assist in quick detection of lung pathology compatible with increasing severity of the COVID-19 disease. At the same time, the use of ultrasound diagnostics in the emergency department could improve logistics and reduce potential exposure of the corona virus to other health personnel. The purpose of the study is to assess whether ultrasound findings correlates with physical examination, labs, and other imaging diagnostics in patients with suspected or diagnosed COVID-19 disease, as well as assessing whether ultrasound diagnostics can assist in risk stratification. The project is conducted as a prospective multicenter study where ultrasound diagnostics will be performed on patients with suspected coronary infection in the emergency departments. Data collection takes place as part of the daily clinical evaluation of acute patients in the emergency departments. The project is planned to be completed towards the end of 2025.

NCT04422691 COVID-19 Pneumonia, Viral Pulmonary Infection Diagnostic Test: Lung ultrasound
MeSH:Infection Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: 30-day mortality

Measure: Mortality

Time: up to 30 days

Description: In-hospital treatment level, e.g. discharge from ED, observational unit, ward, ICU.

Measure: Level-of-care

Time: up to 7 days

Secondary Outcomes

Description: in days

Measure: In-hospital length of stay

Time: Up to 30 days

Measure: Oxygen usage in the emergency department

Time: Within 24 hours

Description: in hours

Measure: Emergency department length of stay

Time: Within 24 hours

Measure: Antibiotics usage

Time: Within 24 hours

Other Outcomes

Description: Clinical correlation between ultrasound findings and vital signs, labs, blood gas and other diagnostic modalities.

Measure: Clinical correlation

Time: Within 3 days

57 the Effect of HFNC Treatment on Mortality and Length of ICU Stay in Patient With COVID-19 Pneumonia

coronavirus disease 2019 related pneumonia is causing acute respiratory failure and this is the most common reason for ICU admission. We have several different way for respiratory support. HFNC is one of the new technics for oxygen support. Our main purpose to observe the effect of HFNC on coronavirus disease 2019 patients' ICU stay and mortality.

NCT04424836 Coronavirus Infection Pneumonia, Viral Acute Respiratory Failure Device: high flow nasal cannula device
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Respiratory Insufficiency
HPO:Pneumonia

Primary Outcomes

Description: the mortality rate of patients

Measure: short term mortality

Time: in 28 days.

Description: means the stay day of patients in intensive care unit

Measure: icu stay

Time: up to 28 days

Secondary Outcomes

Description: partial oxygen pressure, partial carbon dioxide pressure . both measured in mmhg

Measure: blood gases

Time: at the admission time and 24th hour

58 A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Study to Evaluate the Efficacy, Safety, Tolerability, Biomarkers and Pharmacokinetics of Ibudilast (MN-166) in COVID-19 Subjects at Risk for Developing Acute Respiratory Distress Syndrome

The study aims to evaluate MN-166 (ibudilast) in patients with COVID-19 who are at risk of developing acute respiratory distress syndrome. Subjects will be screened, randomly assigned to MN-166 or placebo groups, receive study drug on Days 1-7, and followed up on Day 14 and Day 28.

NCT04429555 Pneumonia, Viral Drug: Ibudilast Drug: Placebo
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Proportion of subjects free from respiratory failure as defined by the need for decreased oxygen requirements (invasive mechanical ventilation, non-invasive ventilation, high-flow oxygen, or ECMO, CPAP, BiPAP, nasal cannula) at Day 7

Measure: Proportion of subjects free from respiratory failure

Time: 7 days

Description: Mean change from baseline in clinical status based on the NIAID 8-point scale (1= death, 8= not hospitalized, no limitations on activities) at Day 7. A higher score indicates improvement.

Measure: Mean change from baseline in clinical status using the NIAID 8-point ordinal scale at Day 7

Time: 7 days

Description: Percentage of patients with at least a one-point improvement in clinical status using the NIAID 8-point ordinal scale (1= death, 8= not hospitalized, no limitations on activities) at Day 7. A higher score indicates improvement.

Measure: Percentage of patients with improvement in clinical status

Time: 7 days

Description: Mean change from baseline (baseline = 1-fold; any value above 1.0 indicates elevation in cytokine levels; any value below 1.0 indicates reduction in cytokine levels) in migration inhibitory factor (MIF), (interleukin 1-beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), and C-reactive protein (CRP) at Day 7.

Measure: Change in cytokine levels from baseline

Time: 7 days

Secondary Outcomes

Description: Incidence, frequency, and severity of adverse events at Day 7 and Day 14

Measure: Adverse event Incidence, severity, relationship to study drug, and study discontinuations

Time: Days 7, 14

Description: Incidence of out-of-normal-range values and markedly abnormal change from baseline in laboratory safety test variables by treatment group.

Measure: Changes in laboratory values from baseline

Time: 7 days

Description: Proportion of subjects free from respiratory failure as defined by the need for decreased oxygen requirement (invasive mechanical ventilation, non-invasive ventilation, high-flow oxygen, or ECMO, CPAP, BiPAP, nasal cannula) at Day 14

Measure: Proportion of subjects free from respiratory failure as defined by the need for decreased oxygen requirement (invasive mechanical ventilation, non-invasive ventilation, high-flow oxygen, or ECMO, CPAP, BiPAP, nasal cannula) at Day 14

Time: 14 days

Description: Mean change from baseline in clinical status using the NIAID 8-point ordinal scale at Day 14 and Day 28

Measure: Mean change from baseline in clinical status

Time: Days 14, 28

Description: Proportion of subjects receiving mechanical ventilation or intubation.

Measure: Incidence of mechanical ventilation or intubation

Time: Days 7, 14

Description: Proportion of subjects requiring submission to the intensive care unit

Measure: Intensive care unit admission

Time: 7 days

Description: Blood sample collection to determine plasma concentrations of ibudilast.

Measure: Plasma concentrations of Ibudilast

Time: 7 days

Description: Number of deaths from any cause

Measure: All cause mortality

Time: Days 7, 14, 28

59 SequelaeCov: a Prospective Study on Lung Damage Caused by SARS-CoV-2 Pneumonia

Pneumonia is a recurrent element of COVID-19 infection, it is often associated with development of respiratory failure and patients frequently need various degrees of oxygen therapy up to non invasive ventilation (NIV-CPAP) and invasive mechanical ventilation (IMV). Main purpose of this study is to evaluate with non invasive clinical instruments (pletysmography, Diffusion lung capacity for carbon monoxide -DLCO-, six minute walking test and dyspnea scores) and radiological tools (chest X-ray and chest CT scan) the development of medium-to-long term pulmonary sequelae caused by SARS-CoV-2 pneumonia.

NCT04435327 COVID Pneumonia, Viral Barotrauma Interstitial Lung Disease Bronchiectasis Adult Emphysema
MeSH:Pneumonia, Viral Pneumonia Lung Diseases Bronchiectasis Lung Diseases, Interstitial Emphysema Barotrauma
HPO:Abnormal lung morphology Bronchiectasis Interstitial pneumonitis Interstitial pulmonary abnormality Pneumonia

Primary Outcomes

Description: Reduction below 80% of predicted values of DLCO

Measure: Reduction of Diffusion of Lung CO (DLCO, single breath technique)

Time: T1 at 6 months from discharge

Description: Reduction below 80% of predicted values of DLCO

Measure: Reduction of Diffusion of Lung CO (DLCO, single breath technique)

Time: T2 at 12 months from discharge

Secondary Outcomes

Description: reduction in maximum distance walked

Measure: Alterations in 6 minute walking test (6MWT)

Time: T1 at 6 months from discharge

Description: reduction in maximum distance walked

Measure: Alterations in 6 minute walking test (6MWT)

Time: T2 at 12 months from discharge

Description: reduction in oxygen saturation nadir

Measure: Alterations in 6 minute walking test (6MWT)

Time: T1 at 6 months from discharge

Description: reduction in oxygen saturation nadir

Measure: Alterations in 6 minute walking test (6MWT)

Time: T2 at 12 months from discharge

Description: reduction of Forced Vital Capacity (FVC, %)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Forced Vital Capacity (FVC, %)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of Forced Vital Capacity (FVC, L)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Forced Vital Capacity (FVC, L)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of Vital Capacity (VC, %)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Vital Capacity (VC, %)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of Vital Capacity (VC, L)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Vital Capacity (VC, L)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of Forced Expiratory Volume in the 1st second (FEV1, L)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Forced Expiratory Volume in the 1st second (FEV1, %)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Forced Expiratory Volume in the 1st second (FEV1, L)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of Forced Expiratory Volume in the 1st second (FEV1, L%)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of Total Lung Capacity (TLC, L)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Total Lung Capacity (TLC, %)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: reduction of Total Lung Capacity (TLC, L)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of Total Lung Capacity (TLC, %)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: alterations of Residual Volume (RV,%)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: alterations of Residual Volume (RV, L)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: alterations of Residual Volume (RV, L)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: alterations of Residual Volume (RV, %)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: increase of Specific Airway Resistance (sRAW) (absolute value)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: increase of Specific Airway Resistance (sRAW) (%)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: increase of Specific Airway Resistance (sRAW) (absolute value)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: increase of Specific Airway Resistance (sRAW) (%)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: alterations of Motley Index (VR/CPT)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: alterations of Motley Index (VR/CPT)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: alterations of Tiffeneau Index (IT)

Measure: Alterations of pletismography

Time: T1 at 6 months from discharge

Description: alterations of Tiffeneau Index (IT)

Measure: Alterations of pletismography

Time: T2 at 12 months from discharge

Description: reduction of PaO2 mmHg

Measure: Alterations of Arterial Blood Gas Analysis

Time: T1 at 6 months from discharge

Description: reduction of PaO2 mmHg

Measure: Alterations of Arterial Blood Gas Analysis

Time: T2 at 12 months from discharge

Description: alteration of PaCO2 mmHg

Measure: Alterations of Arterial Blood Gas Analysis

Time: T1 at 6 months from discharge

Description: alteration of PaCO2 mmHg

Measure: Alterations of Arterial Blood Gas Analysis

Time: T2 at 12 months from discharge

Description: Modified Medical Research Council - mMRC > 0 (minimum 0, maximum 4; higher score means worse outcome)

Measure: Abnormal Dyspnea Score

Time: T1 at 6 months from discharge

Description: Modified Medical Research Council - mMRC > 0(minimum 0, maximum 4; higher score means worse outcome)

Measure: Abnormal Dyspnea Score

Time: T2 at 12 months from discharge

Description: Presence and extension of abnormal pulmonary lung sounds at auscultation

Measure: Presence and extension of abnormal pulmonary lung sounds at auscultation

Time: T1 at 6 months from discharge

Description: Presence and extension of abnormal pulmonary lung sounds at auscultation

Measure: Presence and extension of abnormal pulmonary lung sounds at auscultation

Time: T2 at 12 months from discharge

Description: Presence and extension of radiological alterations at chest X-ray

Measure: Presence and extension of radiological alterations at chest X-ray

Time: T1 at 6 months from discharge

Description: Presence and extension of radiological alterations at chest CT scan

Measure: Presence and extension of radiological alterations at chest CT scan

Time: T2 at 12 months from discharge

60 Controlled and Randomized Clinical Trial for Evaluating the Effect of a Supplement of Glycine as Adjuvant in the Treatment of COVID-19 Pneumonia in Patients Initiating Mechanical Ventilation

This study will explore whether a daily supplement of glycine, a substance that has antiinflammatory, cytoprotective, and endothelium-protecting effects, can improve mortality, as well as clinical and biochemical parameters, in patients with severe COVID-19 who initiate mechanical ventilatory support.

NCT04443673 COVID-19 SARS-CoV Infection SARS (Severe Acute Respiratory Syndrome) SARS Pneumonia ARDS, Human Pneumonia, Viral Dietary Supplement: Glycine
MeSH:Severe Acute Respiratory Syndrome Coronavirus Infections Pneumonia, Viral Pneumonia Respiratory Distress Syndrome, Adult
HPO:Pneumonia

Primary Outcomes

Description: Number of participants who die divided by number of subjects enrolled in the that study group.

Measure: Mortality

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Secondary Outcomes

Description: Number of days spent under mechanical ventilation.

Measure: Days under mechanical ventilation

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Arterial pressure of oxygen divided by inspired fraction of oxygen.

Measure: PaO2/FiO2 ratio

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Plasma concentration of lactate in arterial blood.

Measure: Arterial plasma lactate

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 1β.

Measure: Serum IL-1β

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 2.

Measure: Serum IL-2

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 4.

Measure: Serum IL-4

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 5.

Measure: Serum IL-5

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 6.

Measure: Serum IL-6

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 7.

Measure: Serum IL-7

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 8.

Measure: Serum IL-8

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 10.

Measure: Serum IL-10

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 12 (p70).

Measure: Serum IL-12

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 13.

Measure: Serum IL-13

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interleukin 17A.

Measure: Serum IL-17

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of granulocyte colony stimulating factor.

Measure: Serum G-CSF

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of granulocyte monocyte colony stimulating factor.

Measure: Serum GM-CSF

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of interferon gamma.

Measure: Serum IFN-γ

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of monocyte chemoattractant protein 1 (MCAF).

Measure: Serum MCP-1

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of macrophage inflammatory protein 1β

Measure: Serum MIP-1β

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of tumor necrosis factor alpha.

Measure: Serum TNF-α

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of creatinine.

Measure: Serum creatinine

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of alanine aminotransferase. .

Measure: Serum alanine aminotransferase

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of aspartate aminotransferase. .

Measure: Serum aspartate aminotransferase

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of alkaline phosphatase.

Measure: Serum alkaline phosphatase

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of total bilirubin.

Measure: Serum total bilirubin

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of unconjugated bilirubin.

Measure: Serum unconjugated bilirubin

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of conjugated bilirubin

Measure: Serum conjugated bilirubin

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of C reactive protein.

Measure: Serum C reactive protein

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Blood concentration of hemoglobin.

Measure: Hemoglobin

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Number of white blood cells per µl blood.

Measure: Total leukocytes

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Number of neutrophils per µl blood.

Measure: Neutrophils

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Number of lymphocytes per µl blood.

Measure: Lymphocytes

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Number of monocytes per µl blood.

Measure: Monocytes

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Number of eosinophils per µl blood.

Measure: Eosinophils

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Number of basophils per µl blood.

Measure: Basophils

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Number of platelets per µl blood.

Measure: Platelets

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Time that blood takes to clot.

Measure: Prothrombin time

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Serum concentration of plasminogen activator inhibitor 1 (PAI-1).

Measure: Serum PAI-1

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Sequence Organ Failure Assessment (SOFA) score, composed by assessment of PaO2/FiO2 ratio, Glasgow coma scale, mean arterial pressure, bilirubin, and platelets.

Measure: SOFA score

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

Description: Acute Physiology And Chronic Health Evaluation II (APACHE II) score, composed by assessment of AaDO2 or PaO2, temperature, mean arterial pressure, pH arterial, heart rate, respiratory rate, sodium, potassium, creatinine, hematocrit, white blood cell count, Glasgow coma scale.

Measure: APACHE II score

Time: From date of enrollment and until the date of weaning from ventilator or death, whichever came first, assessed up to 12 months.

61 Interest of Azithromycin With or Without Hydroxychloroquine for the Treatment of COVID-19 Pneumonia : a Retrospective Observational Study

During COVID-19 epidemic, hydroxychloroquine was proposed and authorized as a possible key agent in the treatment of COVID-19 hospitalized pneumonia, including in France. Gautret et al. proposed the combination regimen with azithromycin. However only one study reported the interest of azithromycin alone. Retrospective study reporting the impact of the anti-infective agents used during the pandemic in a tertiary care hospital, using azithromycin with or without hydroxychloroquine.

NCT04453501 COVID Pneumonia, Viral Drug: favorable outcome
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: After being admitted, patient was monitored whether he does not required to be transferred in ICU or died because of a severe COVID-19 pneumonia within 7 days. The outcome was purely clinical. If patient was discharged at home after admission and/or was transferred into a rehabilitation center he was considered as a favorable outcome independently of any biological marker.

Measure: Favorable outcome

Time: Assessed within 7 days after admission

Secondary Outcomes

Description: Studying if biological abnormalities (lymphocyte count or CRP) at admission were associated with an unfavorable outcome

Measure: Risk factors 1

Time: Assessed at day 1

Description: Studying if comorbidities were associated with an unfavorable outcome

Measure: Risk factors 2

Time: Assessed at day 1

Description: Studying whether any regimen was associated with a favorable outcome (including azithromycin)

Measure: Interest of anti-infective agents

Time: From date of inclusion until the date of first documented progression to ICU or date of death from any cause, whichever came first, assessed up to 2 months

62 Inhaled NO for the Treatment of COVID-19 Caused by SARS-CoV-2

The purpose of this open label, 2-phase, study is to obtain information on the safety of 80 ppm and the safety and efficacy of 150 ppm Nitric Oxide given in addition to the standard of care of patients with COVID-19 caused by SARS-CoV-2.

NCT04456088 COVID-19 SARS-CoV 2 Respiratory Disease Pneumonia, Viral Corona Virus Infection Combination Product: 150 ppm Nitric Oxide delivered through LungFit Delivery System Combination Product: 80 ppm Nitric Oxide delivered through LungFit Delivery System
MeSH:Coronavirus Infections Severe Acute Respiratory Syndrome Pneumonia, Viral Pneumonia Respiration Disorders Respiratory Tract Diseases
HPO:Pneumonia

Primary Outcomes

Description: Time to deterioration as measured by any one of the following: need for non-invasive ventilation need for high flow nasal cannula (HFNC) or need for intubation Death from any cause

Measure: Time to deterioration

Time: up to 14 days

Secondary Outcomes

Description: Time to patient having stable oxygen saturation (SpO2) of greater than 92% for longer than 3 hr on room air

Measure: Time to stable oxygen saturation

Time: up to 14 days

Other Outcomes

Description: Treatment Emergent Adverse Events and SAEs - safety evaluation for 30 days after last inhalation treatment

Measure: Treatment Emergent Adverse Events and SAEs

Time: 30 days after last inhalation treatment

63 COVID-19 Convalescent Plasma Treatment in SARS-CoV-2 Infected Patients: Multicenter Interventional Study

Due to the limitations of COVID-19 treatment and in the absence of licensed antiviral for COVID-19, the historical choice of therapeutic convalescent plasma (CP) is considered especially against RNA viruses .It was known that convalescent plasma does not only neutralize the pathogens but provide passive immunomodulatory properties that allows the recipient to control the exaggerated inflammatory cascade. However, still there is a lack of understanding of the mechanism of action of CCP therapeutic components. Reports from open label trials and case series show that CCP is safe and might be effective in severe cases with COVID-19 . Therefore, the World health organisation (WHO) and Food and Drug Administration (FDA) issued guidelines for the CCP usage and standardised the donor selection , which was further supported by Emergency use Authorisation (EUA) . Therefore, the aim in the current study is to assess the effect of CCP on time to clinical improvement, hospital mortality and to evaluate the changes on oxygen saturation and laboratory markers (lymphocyte counts and C-reactive protein) compared with standard treatment alone in patients with moderate or severe COVID-19 disease.

NCT04474340 Moderate COVID-19 Pneumonia, Severe COVID-19 Pneumonia Pneumonia, Viral Drug: COVID-19 Convalscent Plasma
MeSH:Pneumonia, Viral Pneumonia
HPO:Pneumonia

Primary Outcomes

Description: Time to clinical improvement is defined as a time frame from CCP administration till 30 days or discharge, defined as a 2-grade decrease on an ordinal WHO clinical scale . The WHO clinical scale based on the following 7-grade ordinal levels: 1= ambulatory, independent; 2= ambulatory with assistance; 3=hospitalised, not requiring supplemental oxygen; 4= hospitalised, requiring supplemental oxygen; 5= hospitalised, requiring nasal high-flow oxygen therapy, noninvasive mechanical ventilation, or both; 6= hospitalised, requiring extracorporeal membrane oxygenation, invasive mechanical ventilation, or both; and 7= death.

Measure: Time to clinical improvement

Time: 30 days

Secondary Outcomes

Measure: All cause mortality

Time: 30 days


HPO Nodes