Developed by Shray Alag, The Harker School
Sections: Correlations,
Clinical Trials, and HPO
Navigate: Clinical Trials and HPO
Name (Synonyms) | Correlation | |
---|---|---|
drug238 | After COVID-19 Pandemic Wiki | 1.00 |
drug1286 | During COVID-19 Pandemic Wiki | 1.00 |
Name (Synonyms) | Correlation | |
---|---|---|
D012127 | Respiratory Distress Syndrome, Newborn NIH | 0.08 |
D055371 | Acute Lung Injury NIH | 0.08 |
D012128 | Respiratory Distress Syndrome, Adult NIH | 0.07 |
Name (Synonyms) | Correlation |
---|
Navigate: Correlations HPO
There is one clinical trial.
COVID-19 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2. COVID-19 causes life threatening complications known as Cytokine Release Syndrome or Cytokine Storm and Acute Respiratory Distress Syndrome. These complications are the main causes of death in this global pandemic. Over 1000 clinical trials are on-going worldwide to diagnose, treat, and improve the aggressive clinical course of COVID-19. The investigators propose the first, and so far, only gene therapy solution that has the potential to address this urgent unmet medical need. Rationale 1. DeltaRex-G is a safe, non-pathogenic, replication incompetent, RNA virus-based gene vector. DeltaRex-G nanoparticles (~100 nm) can mimic RNA virus SARS-CoV-2 by binding to viral receptors in human cells and may serve as a decoy to prevent SARSCoV-2 cell entry by crowding/neutralizing the SARS-CoV-2 even where the receptors may be different. 2. DeltaRex-G is a disease-seeking retrovector encoding a cytocidal dominant negative human cyclin G1 as genetic payload). When injected intravenously, the DeltaRex-G nanoparticles has a navigational system that targets exposed collagenous proteins (XC proteins) in injured tissues (e.g. inflamed lung, kidney, etc.), thus increasing the effective drug concentration at the sites of injury, in the vicinity of activated/proliferative T cells evoked by COVID-19. The DeltaRex-G then enters the rapidly dividing T cells and kills them by arresting the G1cell division cycle, hence, reducing cytokine release and ARDS; 3. Intravenous DeltaRex-G has minimal systemic toxicity due to its navigational system (targeting properties) that limits the biodistribution of DeltaRex-G only to areas of injury where exposed collagenous (XC) proteins are abnormally found; and 4. DeltaRex-G is currently available in FDA approved "Right to Try" or Expanded Access Program for Stage 4 cancers for an intermediate size population. To gain this approval, FDA requires DeltaRex-G to have demonstrated safety and efficacy in early clinical trials.
Description: The study will employ the standard "cohort of three" design (Storer, 1989). Three patients are treated at each dose level with expansion to six patients per cohort if DLT is observed in one of the three initially-enrolled patients at each dose level. The maximum tolerated dose is defined as the highest safely tolerated dose, where not more than one patient experienced DLT, with the next higher dose level having at least two patients who experienced DLT. No intra-patient escalation will take place.
Measure: Maximum Tolerated Dose Time: 3 weeksDescription: Duration of survival
Measure: Survival Time: 2 monthsDescription: Time of hospital admission to time of discharge
Measure: Hospital Stay Time: 3 weeksDescription: Time from start of mechanical ventilation to extubation or death
Measure: Ventilator Therapy Time: 3 weeksDescription: Time from start of intensive care to discarge to regular room
Measure: Intensive Care Unit Stay Time: 3 weeksDescription: Improvement in serum cytokine IL-6, IL12, TNF alpha
Measure: Cytokine Pattern Time: 3 weeksAlphabetical listing of all HPO terms. Navigate: Correlations Clinical Trials
Data processed on September 26, 2020.
An HTML report was created for each of the unique drugs, MeSH, and HPO terms associated with COVID-19 clinical trials. Each report contains a list of either the drug, the MeSH terms, or the HPO terms. All of the terms in a category are displayed on the left-hand side of the report to enable easy navigation, and the reports contain a list of correlated drugs, MeSH, and HPO terms. Further, all reports contain the details of the clinical trials in which the term is referenced. Every clinical trial report shows the mapped HPO and MeSH terms, which are also hyperlinked. Related HPO terms, with their associated genes, protein mutations, and SNPs are also referenced in the report.
Drug Reports MeSH Reports HPO Reports