Developed by Shray Alag, The Harker School
Sections: Correlations,
Clinical Trials, and HPO
Navigate: Clinical Trials and HPO
Name (Synonyms) | Correlation |
---|
Navigate: Correlations HPO
There is one clinical trial.
Since the 1st pandemic of the 21st century caused by SARS coronavirus, the world has experienced outbreaks of swine origin H1N1 influenza, Ebola and Zika viruses, which have all resulted in global health crises. Rapid mass vaccination with an effective vaccine such as a live attenuated vaccine, of vulnerable immune-naïve populations to establish herd immunity is an approach to control outbreaks. Such live attenuated vaccine had been used with great success in sporadic yellow fever outbreaks and recently successfully employed in Ebola field trial, both of these diseases have the potential for pandemic spread. Indeed, live attenuated vaccines have proven especially effective in controlling childhood diseases and have even succeeded in eradicating polio and measles from most parts of the world. However, deployment of such vaccines for pandemic control cannot be limited to children but must include adults in order to rapidly elevate herd immunity rates to halt transmission. Vaccinating adults may produce efficacy rates significantly different to those observed in children due to the prevalence of chronic diseases and their associated metabolic complications. Presently, there are 1 billion people who are overweight, many suffer from concurrent metabolic disorders. As activation of the adaptive immunity is reliant on a robust innate immune response to vaccines, metabolic disorders and long-term anti-inflammatory therapy with interventions such as statins may reduce vaccine immunogenicity resulting in suboptimal efficacy in this subpopulation. This study would therefore test the hypothesis that statins reduce live attenuated vaccine immunogenicity. We will combine a clinical trial with systems vaccinology approaches to define the impact statins has on the innate immune, B and T-cell responses to live attenuated vaccination. Our study will thus extend upon another recently completed trial by us and will provide new insights into the determinants of vaccine efficacy in a rapidly growing and aging population globally
Description: the difference in neutralizing antibody titer to YF17D at Day 28, as measured by plaque reduction neutralization test (PRNT)
Measure: the adaptive immune response to YF vaccination in (A): Adult human volunteers who are on long term statins therapy and (B): Adult human volunteers (controls) Time: 28 daysDescription: viremia levels response in adult human volunteers on long term statins therapy compared to controls post-YF vaccination
Measure: the difference in innate immune response to YF vaccination in adult human volunteers on long term statins therapy compared to controls post-YF vaccination Time: 28 daysDescription: To examine the Cd4+ and Cd8+ T cell response in adult human volunteers on long term statins therapy compared to controls post-YF vaccination
Measure: the cellular immune response of adult human volunteers on long term statins therapy with controls following YF vaccination. Time: 28 daysAlphabetical listing of all HPO terms. Navigate: Correlations Clinical Trials
Data processed on September 26, 2020.
An HTML report was created for each of the unique drugs, MeSH, and HPO terms associated with COVID-19 clinical trials. Each report contains a list of either the drug, the MeSH terms, or the HPO terms. All of the terms in a category are displayed on the left-hand side of the report to enable easy navigation, and the reports contain a list of correlated drugs, MeSH, and HPO terms. Further, all reports contain the details of the clinical trials in which the term is referenced. Every clinical trial report shows the mapped HPO and MeSH terms, which are also hyperlinked. Related HPO terms, with their associated genes, protein mutations, and SNPs are also referenced in the report.
Drug Reports MeSH Reports HPO Reports