Developed by Shray Alag, The Harker School
Sections: Correlations,
Clinical Trials, and HPO
Navigate: Clinical Trials and HPO
Name (Synonyms) | Correlation | |
---|---|---|
drug2914 | Piperacillin/tazobactam Wiki | 0.71 |
drug1082 | Corticosteroid injection Wiki | 0.71 |
drug2744 | Oxygen supply Wiki | 0.71 |
Name (Synonyms) | Correlation | |
---|---|---|
drug3382 | Ritonavir/lopinavir Wiki | 0.71 |
drug4033 | Tocilizumab Injection [Actemra] Wiki | 0.71 |
drug4134 | Ultra-Low-dose radiotherapy Wiki | 0.71 |
drug2208 | Low-dose radiotherapy Wiki | 0.71 |
drug4803 | ventilatory support with oxygen therapy Wiki | 0.71 |
drug1081 | Corticosteroid Wiki | 0.50 |
drug421 | Azithromycin Wiki | 0.23 |
drug2174 | Lopinavir/ritonavir Wiki | 0.22 |
drug1795 | Hydroxychloroquine Sulfate Wiki | 0.20 |
drug4025 | Tocilizumab Wiki | 0.12 |
drug1775 | Hydroxychloroquine Wiki | 0.07 |
Navigate: Correlations HPO
There are 2 clinical trials
Low radiation doses produce anti-inflammatory effects, which may be useful in the treatment of respiratory complications of COVID-19. This type of treatment is non-invasive and therefore, a priori, it can be used in all types of patients. Main objective: To evaluate the efficacy of low-dose lung irradiation as an adjunctive treatment in interstitial pneumonia in patients with COVID-19 by improving the PAFI O2 by 20% measured 48h after treatment with respect to the pre baseline measurement. -irradiation.
Description: To evaluate the efficacy of low-dose pulmonary irradiation as an adjunctive treatment in interstitial pneumonia in patients with COVID-19 by improving the PAFI O2 by 20% measured 48h after treatment with respect to baseline pre-irradiation measurement. . In cases of impossibility the SaFiO2 will be determined
Measure: Efficacy of low-dose pulmonary irradiation assessed by change in PAFI O2 by 20% Time: Day 2 after interventional radiotherapyDescription: Lung toxicity measured according to CTCAEv5
Measure: Number of participants with treatment-related adverse events as assessed by CTCAE v5.0 Time: Day 30 and day 90 after interventional radiotherapyDescription: Chest CT
Measure: Change of the radiological image Time: Days 7 and day 30 after interventional radiotherapyDescription: Death of any cause
Measure: Overall mortality Time: Day 15 and Day 30 after interventional radiotherapyDescription: Interleukins IL-6, IL-10, IL-1, IL-2, IL-8 (pg/ml)
Measure: Measure of pro-inflammatory interleukins Time: Days 1, day 4 and day 7 after interventional radiotherapyDescription: TGF-β (ng/ml)
Measure: Measure of trasforming growth factor (TGF-b) Time: Days 1, day 4 and day 7 after interventional radiotherapyDescription: TNF-α (pg/ml)
Measure: Measure of tumor necrosis factor alpha (TNF-a) Time: Days 1, day 4 and day 7 after interventional radiotherapyDescription: Overexpression of L-, E-, and P-selectin
Measure: Determining overexpression of pro-inflammatory selectin Time: Days 1, day 4 and day 7 after interventional radiotherapyDescription: Overexpression of ICAM-1, VCAM
Measure: Determining cell adhesion molecules (CAMs) Time: Days 1, day 4 and day 7 after interventional radiotherapyDescription: PON-1(paraoxonase and arylesterase activity) (IU/ml)
Measure: Measure of marker of oxidative stress PON-1 Time: Days 1, day 4 and day 7 after interventional radiotherapyThe host response against the coronavirus 2 (SARS-CoV-2) appears to be mediated by a 'cytoquine storm' developing a systemic inflammatory mechanism and an acute respiratory distress syndrome (ARDS), in the form of a bilateral pneumonitis, requiring invasive mechanical ventilation (IMV) in an important group of patients. In terms of preventing progression to the critical phase with the consequent need of admission to the intensive care units (ICU), it has been recently proposed that this inflammatory cytoquine-mediated process can be safely treated by a single course of ultra-low radiotherapy (RT) dose < 1 Gy. The main purpose of the study was to analyze the efficacy of ultra low-dose pulmonary RT, as an anti-inflammatory intention in patients with SARS-Cov-2 pneumonia with a poor or no response to standard medical treatment and without IMV.
Description: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation.It was performed by oxygen therapy status assessment after RT treatment. Improvement criteria is considered as an oxygen therapy de-escalation (more to less need for support: Ventimask (VMK) with reservoir >VMK >Nasal Cannula-(NC).)
Measure: Oxygen Therapy Status at Day 2 Time: At 2 after RTDescription: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation. .It was performed by oxygen saturation (Sat02 %) status assessment after RT treatment. Improvement criteria is considered as a Sat02 with/without oxygen therapy >93% (Pulse oximeter measurement)
Measure: Oxygen Saturation (Sat02; Pulse oximeter measurement) at Day 2 Time: At 2 days after RTDescription: Pa02 / Fi02 > 300 mmHg
Measure: Blood Gas Analysis at Day 2 Time: At 2 days after RTDescription: Achievement of normal range value in 1 or more of the inflammatory and immunological parameters (lymphocytes, IL-6, D-dimer, ferritin, LDH, C Reactive Protein (CRP) and fibrinogen)
Measure: Blood Test at Day 2 Time: At 2 days after RTDescription: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation.It was performed by oxygen therapy status assessment after RT treatment. Improvement criteria is considered as an oxygen therapy de-escalation (more to less need for support: Ventimask (VMK) with reservoir >VMK >Nasal Cannula-(NC).)
Measure: Oxygen Therapy Status at Day 5 Time: At 5 after RTDescription: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation. .It was performed by oxygen saturation (Sat02 %) status assessment after RT treatment. Improvement criteria is considered as a Sat02 with/without oxygen therapy >93% (Pulse oximeter measurement)
Measure: Oxygen Saturation (Sat02; Pulse oximeter measurement) at Day 5 Time: At 5 days after RTDescription: Achievement of normal range value in 1 or more of the inflammatory and immunological parameters (lymphocytes, IL-6, D-dimer, ferritin, LDH, C Reactive Protein (CRP) and fibrinogen)
Measure: Blood Test at Day 5 Time: At 5 days after RTDescription: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation.It was performed by oxygen therapy status assessment after RT treatment. Improvement criteria is considered as an oxygen therapy de-escalation (more to less need for support: Ventimask (VMK) with reservoir >VMK >Nasal Cannula-(NC).)
Measure: Oxygen Therapy Status at Day 7 Time: At 7 after RTDescription: To evaluate the efficacy of ultra low-dose pulmonary RT through clinical evaluation. .It was performed by oxygen saturation (Sat02 %) status assessment after RT treatment. Improvement criteria is considered as a Sat02 with/without oxygen therapy >93% (Pulse oximeter measurement)
Measure: Oxygen Saturation (Sat02; Pulse oximeter measurement) at Day 7 Time: At 7 days after RTDescription: Achievement of normal range value in 1 or more of the inflammatory and immunological parameters (lymphocytes, IL-6, D-dimer, ferritin, LDH, C Reactive Protein (CRP) and fibrinogen)
Measure: Blood Test at Day 7 Time: At 7 days after RTDescription: To evaluate the efficacy of ultra low-dose pulmonary RT through radiological evaluation.It was performed by thoracic CT scan after RT treatment . It is considered a radiological improvement the decrease of the Total Severity Score (TSS) from the baseline in > or = 1 point. NOTE: The score values ranged from 0 to 4 according to the sum of the percentage involvement of each of the 5 lung lobes. The total severity score (TSS), was reached by summing the overall involvement in the lung (0-20 points)
Measure: Change from baseline Total Severity Score (TSS) analyzed in a thoracic CT scan at Day 7 Time: At 7 days after RTDescription: Recovery time after RT administration until hospital discharge or death (<48h; 2-7 days; >7 days; clinical worsening or death)
Measure: Recovery time Time: From RT administration until hospital discharge or deathDescription: COVID-19 negativization test
Measure: COVID-19 status Time: At 7 days after RTDescription: To evaluate the efficacy of ultra low-dose pulmonary RT through radiological evaluation.It was performed by thoracic CT scan after RT treatment . It is considered a radiological improvement the decrease of the Total Severity Score (TSS) from the baseline in > or = 1 point. NOTE: The score values ranged from 0 to 4 according to the sum of the percentage involvement of each of the 5 lung lobes. The total severity score (TSS), was reached by summing the overall involvement in the lung (0-20 points)
Measure: Change from baseline Total Severity Score (TSS) analyzed in a thoracic CT scan al Month 1 Time: At 1 month after RTDescription: Toxicity was assessed and rated according to the NIH Common Terminology Criteria for Adverse Events (CTCAE version 5.0) and RTOG scales.
Measure: Acute Toxicity Time: 1-3 months after RTAlphabetical listing of all HPO terms. Navigate: Correlations Clinical Trials
Data processed on September 26, 2020.
An HTML report was created for each of the unique drugs, MeSH, and HPO terms associated with COVID-19 clinical trials. Each report contains a list of either the drug, the MeSH terms, or the HPO terms. All of the terms in a category are displayed on the left-hand side of the report to enable easy navigation, and the reports contain a list of correlated drugs, MeSH, and HPO terms. Further, all reports contain the details of the clinical trials in which the term is referenced. Every clinical trial report shows the mapped HPO and MeSH terms, which are also hyperlinked. Related HPO terms, with their associated genes, protein mutations, and SNPs are also referenced in the report.
Drug Reports MeSH Reports HPO Reports