Developed by Shray Alag, The Harker School
Sections: Correlations,
Clinical Trials, and HPO
Navigate: Clinical Trials and HPO
Name (Synonyms) | Correlation | |
---|---|---|
D020767 | Intracranial Thrombosis NIH | 1.00 |
D019851 | Thrombophilia NIH | 0.50 |
D020246 | Venous Thrombosis NIH | 0.29 |
Name (Synonyms) | Correlation | |
---|---|---|
HP:0100724 | Hypercoagulability HPO | 0.50 |
HP:0002625 | Deep venous thrombosis HPO | 0.29 |
Navigate: Correlations HPO
There is one clinical trial.
An estimated 22% of the global population is at an increased risk of a severe form of COVID-19, while one in four coronavirus patients admitted to intensive care unit will develop a pulmonary embolism. A major public health question remains to be investigated: why COVID-19 is mild for some, critically severe for others and why only a percentage of COVID-19 patients develop thrombosis, despite the disease's proven hypercoagulable state? Patients' intrinsic characteristics might be responsible for the deep variety of disease forms. Our study aims to assess the validity of the hypothesis according to which underlining genetic variations might be responsible for different degrees of severity and thrombotic events risks in the novel coronavirus disease. Moreover, we suspect that prothrombotic genotypes occuring in the genes that encode angiotensin-converting enzyme (ACE-DEL/INS) and angiotensinogen (AGT M235T) are involved in the unpredictable evolution of COVID-19, both in terms of severity and thrombotic events, due to the strong interactions of SARS-CoV-2 with the renin-angiotensin-aldosterone system (RAAS). Therefore, we also aim to assess the validity of the theory according to which there is a pre-existing atypical modulation of RAAS in COVID-19 patients that develop severe forms and/or thrombosis. Our hypothesis is based on various observations. Firstly, there is a substantial similarity with a reasonably related condition such as sepsis, for which there is a validated theory stating that thrombophilic mutations affect patients' clinical response. Secondly, racial and ethnic genetic differences are responsible for significant dissimilar thrombotic risks among various nations. Thirdly, an increase in stroke incidence has been reported in young patients with COVID-19, without essential thrombosis risk factors, favoring the idea that a genetic predisposition could contribute to increase the thrombotic and thromboembolic risk. Fourthly, the plasminogen activator inhibitor (PAI)-1 4G/5G inherited mutation was found to be responsible for a thrombotic state causing post-SARS osteonecrosis.
Description: The difference of prothrombotic genotypes frequency between the three groups
Measure: Number of patients with thrombophilic profile alterations Time: One yearDescription: The differences of RAAS components levels between the three groups
Measure: Number of patients with RAAS components alterations Time: One yearAlphabetical listing of all HPO terms. Navigate: Correlations Clinical Trials
Data processed on September 26, 2020.
An HTML report was created for each of the unique drugs, MeSH, and HPO terms associated with COVID-19 clinical trials. Each report contains a list of either the drug, the MeSH terms, or the HPO terms. All of the terms in a category are displayed on the left-hand side of the report to enable easy navigation, and the reports contain a list of correlated drugs, MeSH, and HPO terms. Further, all reports contain the details of the clinical trials in which the term is referenced. Every clinical trial report shows the mapped HPO and MeSH terms, which are also hyperlinked. Related HPO terms, with their associated genes, protein mutations, and SNPs are also referenced in the report.
Drug Reports MeSH Reports HPO Reports