Developed by Shray Alag, The Harker School
Sections: Correlations,
Clinical Trials, and HPO
Navigate: Clinical Trials and HPO
Name (Synonyms) | Correlation | |
---|---|---|
drug1251 | Doctella telehealth monitoring Wiki | 1.00 |
drug4254 | Vitamin D3 or Placebo Wiki | 1.00 |
drug3504 | Saline Nasal Irrigation Wiki | 1.00 |
Name (Synonyms) | Correlation | |
---|---|---|
D045169 | Severe Acute Respiratory Syndrome NIH | 0.04 |
D018352 | Coronavirus Infections NIH | 0.04 |
Name (Synonyms) | Correlation |
---|
Navigate: Correlations HPO
There is one clinical trial.
Nasal saline irrigations are a safe and commonly used mechanism to treat a variety of sinonasal diseases including sinusitis, rhinitis, and upper respiratory tract infections. When used properly, these irrigations are a safe and easy intervention available over the counter without a prescription. Additionally, baby shampoo has been found to be a safe additive functioning as a surfactant when a small amount is added to the saline rinses which may help augment clearance of the sinonasal cavity. While many systemic medications and treatments have been proposed for COVID-19, there has not yet been a study looking at targeted local intervention to the nasal cavity and nasopharynx where the viral load is the highest. Studies have shown that the use of simple over the counter nasal saline irrigations can decrease viral shedding in the setting of viral URIs, including the common coronavirus (not SARS-CoV-2). Further, as SARS-CoV-2 is an enveloped virus, mild-detergent application with nasal saline would neutralize the virus further. It is our hypothesis that nasal saline or nasal saline with baby shampoo irrigations may decrease viral shedding/viral load and viral transmission, secondary bacterial load, nasopharyngeal inflammation in patients infected with the novel SARS-CoV-2.
Description: Viral RNA will be extracted using a standard Qiagen viral RNA isolation kit. An established, high-throughput CoV genome sequencing pipeline will be used to perform overlapping long-range RT-PCR across the viral genome for each viral genome proposed in this project.
Measure: Change in SARS-CoV-2 mucosal immune response in the nasopharynx Time: Day 1 to day 21Description: Evaluate microbial sequence data in the context of SARS-CoV-2 infection status to determine taxonomic profiles and their distributions within and between samples.
Measure: Change in microbial load in the nasopharynx Time: Day 1 to day 21Description: Perform qPCR Analysis to asses viral copy number.
Measure: Change in Viral Load in the nasopharynx over the course of COVID-19 infection Time: Day 1 to day 21Description: Identify symptom burden during the course of the disease via self-report
Measure: Symptom assessment Time: 21 daysDescription: Identify temperature during the course of the disease via self-report
Measure: Temperature assessment Time: 21 daysAlphabetical listing of all HPO terms. Navigate: Correlations Clinical Trials
Data processed on September 26, 2020.
An HTML report was created for each of the unique drugs, MeSH, and HPO terms associated with COVID-19 clinical trials. Each report contains a list of either the drug, the MeSH terms, or the HPO terms. All of the terms in a category are displayed on the left-hand side of the report to enable easy navigation, and the reports contain a list of correlated drugs, MeSH, and HPO terms. Further, all reports contain the details of the clinical trials in which the term is referenced. Every clinical trial report shows the mapped HPO and MeSH terms, which are also hyperlinked. Related HPO terms, with their associated genes, protein mutations, and SNPs are also referenced in the report.
Drug Reports MeSH Reports HPO Reports