Developed by Shray Alag, The Harker School
Sections: Correlations,
Clinical Trials, and HPO
Navigate: Clinical Trials and HPO
Navigate: Correlations HPO
There is one clinical trial.
More than 17 million people have been infected and more than 677K lives have been lost since the COVID-19 pandemic. Unfortunately, there is neither an effective treatment nor is there a vaccination for this deadly virus. The moderate to severe COVID-19 patients suffer acute lung injury and need oxygen therapy, and even ventilators, to help them breathe. When a person gets a viral infection, certain body cells (inflammatory/immune cells) get activated and release a wide range of small molecules, also known as cytokines, to help combat the virus. But it is possible for the body to overreact to the virus and release an overabundance of cytokines, forming what is known as a "cytokine storm". When a cytokine storm is formed, these cytokines cause more damage to their own cells than to the invading COVID-19 that they're trying to fight. Recently, doctors and research scientists are becoming increasingly convinced that, in some cases, this is likely what is happening in the moderate to severe COVID-19 patients. The cytokine storm may be contributing to respiratory failure, which is the leading cause of mortality for severe COVID-19 patients. Therefore, being able to control the formation of cytokine storms will also help alleviate the symptoms and aid in the recovery of severe COVID-19 patients.
Description: Respiratory failure is defined based on resource utilization requiring at least 1 of the following modalities: Endotracheal intubation and mechanical ventilation Oxygen delivered by high-flow nasal cannula (heated, humidified, oxygen delivered via reinforced nasal cannula at flow rates >20L/min with fraction of delivered oxygen ≥0.5) Noninvasive positive pressure ventilation or CPAP Whether patient is on ECMO
Measure: Proportion of patients alive and free of respiratory failure through the 30-day trial. Time: 30 DaysDescription: We will collect blood samples of the regadenoson and placebo treated patients at the baseline, 30mins, 4 hours during drug infusion and 12 hour post drug infusion. It may also including the daily blood collected on normal standard care base. The inflammatory cytokines, including IL-1 beta, IL-6, IL-4, IL-8, IL-10, IL-12, IL-17, TNF-α, and IFN-γ will be measured using the Luminex™ 100 Multi-analyte System at The UM SOM Cytokine Core Laboratory. The levels of of cytokines will be measure in picogram/milliliter (pg/ml).
Measure: Change of the levels of the inflammatory cytokines prior, during and post drug infusion. Time: 30 daysDescription: The same blood samples used in outcomes 2 will be used to measure the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 using gelatin zymography as described in our previous publications (Zhao et al, 2010 & 2011). The enzyme levels will be quantified using The Image Lab 5.1 software. The unit will be nanogram/ml (ng/ml).
Measure: Change of the levels of MMP-2 and MMP-9 prior, during and post drug infusion. Time: 30 daysAlphabetical listing of all HPO terms. Navigate: Correlations Clinical Trials
Data processed on September 26, 2020.
An HTML report was created for each of the unique drugs, MeSH, and HPO terms associated with COVID-19 clinical trials. Each report contains a list of either the drug, the MeSH terms, or the HPO terms. All of the terms in a category are displayed on the left-hand side of the report to enable easy navigation, and the reports contain a list of correlated drugs, MeSH, and HPO terms. Further, all reports contain the details of the clinical trials in which the term is referenced. Every clinical trial report shows the mapped HPO and MeSH terms, which are also hyperlinked. Related HPO terms, with their associated genes, protein mutations, and SNPs are also referenced in the report.
Drug Reports MeSH Reports HPO Reports