The primary aim of this study is to determine whether the cholesterol-lowering efficacy of barley b- glucan varied as function of molecular weight (MW) and the total daily amount consumed. Our second aim is to investigate the mechanism responsible for the action, specifically, whether β-glucan lowers circulating cholesterol concentration via inhibiting cholesterol absorption and synthesis. Thirdly, we aim to determine if any gene-diet interactions are associated with cholesterol lowering by barley β-glucan. In addition, we aim to investigate the alteration of the gut microbiota after β-glucan consumption and the correlation between the altered gut microbiota and cardiovascular disease risk factors.
Name: Control
Name: 3g LMW beta-glucan
Name: 5g LMW beta-glucan
Name: 3g HMW beta-glucan
Description: Fasted total cholesterol concentration will be measured using the automated enzymatic methods.
Measure: Changs in Total Cholesterol Time: Beginning and end of each phaseDescription: Serum LDL cholesterol will be estimated using the Friedewald equation.
Measure: Changes in LDL Cholesterol Time: Beginning and end of each phaseDescription: The rate of cholesterol absorption and synthesis will be measured in each intervention phase using single stable isotope labelling technique.
Measure: Cholesterol Absorption/Synthesis Time: End of each phaseDescription: The Single Nucleotide Polymorphism (SNP) rs3808607 of CYP7A1 gene, rs429358 and rs7412 of APOE gene, and their associations with different blood lipid responses to beta-glucan interventions will be determined.
Measure: Potential Gene-nutrient Interactions: CYP7A1 and APOE Time: Once for each participantDescription: Body weight will be monitored every day when subject visits the Richardson Centre. Waist circumference will be measured at the beginning and end of each study phase.
Measure: Changes in Body Weight and Waist Circumference(WC) Time: Every day for body weight; beginning and end of each phase for WCAllocation: Randomized
Crossover Assignment
There are 3 SNPs
The Single Nucleotide Polymorphism (SNP) rs3808607 of CYP7A1 gene, rs429358 and rs7412 of APOE gene, and their associations with different blood lipid responses to beta-glucan interventions will be determined.. Changes in Body Weight and Waist Circumference(WC).
Single nucleotide polymorphisms (SNPs), rs3808607 of gene CYP7A1and rs429358 and rs7412 will be determined byTaqMan® SNP Genotyping assay following the manufacturer's protocol.
The Single Nucleotide Polymorphism (SNP) rs3808607 of CYP7A1 gene, rs429358 and rs7412 of APOE gene, and their associations with different blood lipid responses to beta-glucan interventions will be determined.. Changes in Body Weight and Waist Circumference(WC).
Single nucleotide polymorphisms (SNPs), rs3808607 of gene CYP7A1and rs429358 and rs7412 will be determined byTaqMan® SNP Genotyping assay following the manufacturer's protocol.
The Single Nucleotide Polymorphism (SNP) rs3808607 of CYP7A1 gene, rs429358 and rs7412 of APOE gene, and their associations with different blood lipid responses to beta-glucan interventions will be determined.. Changes in Body Weight and Waist Circumference(WC).
Single nucleotide polymorphisms (SNPs), rs3808607 of gene CYP7A1and rs429358 and rs7412 will be determined byTaqMan® SNP Genotyping assay following the manufacturer's protocol.