Nutrients and chemicals in food are able to regulate expression of genetic elements. Gene-nutrient interaction in response specific diets can increase an individual's risk, shifting the individual from health toward the development of chronic disease. The Transcription Factor 7 Like 2 (TCF7L2) gene may either put individuals at risk for or protect from Type 2 diabetes mellitus in the presence of certain foods. The main purpose of this four-week study is to examine diet-induced gene-nutrient interaction, with a focus on glucose, insulin, inflammation (CRP) and the plasma metabolome in individuals who have either the CC or the TT form of the rs7903146 single nucleotide polymorphism (SNP) (C/T) within the TCF7L2 gene. The (2) one-week study diets, one Mediterranean diet (MedDiet) based and the other low-fat based will be separated by a (1) week return to a regular habitual diet.
Name: Mediterranean Diet
Name: Low-fat diet
Description: Plasma glucose levels (mg/dl) will be measured in the fasting state during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP
Measure: Glucose Time: 1 week per intervention armDescription: Fasting plasma insulin levels (pmol/l) will be measured in the fasting state during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP
Measure: Insulin Time: 1 week per intervention armDescription: The response of plasma metabolites to the Mediterranean and low-fat diets diet) will be measured using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP
Measure: Metabolomics Time: 1 week per intervention armDescription: Fasting plasma concentrations of VLDL in mg/dl, assessed by proton nuclear magnetic resonance (NMR) spectroscopy will be measured during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP
Measure: Very low density lipoproteins (VLDL) Time: 1 week per intervention armDescription: Fasting plasma concentrations of LDL in mg/dl, assessed by proton nuclear magnetic resonance (NMR) spectroscopy will be measured during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP
Measure: Low-density lipoproteins (LDL) Time: 1 week per intervention armDescription: Fasting plasma concentrations of HDL in mg/dl, assessed by proton nuclear magnetic resonance (NMR) spectroscopy will be measured during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP
Measure: High-density lipoproteins (HDL) Time: 1 week per intervention armDescription: Plasma C-reactive protein (mg/dl) will be measured in the fasting state during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP
Measure: CRP Time: 1 week per intervention armAllocation: Randomized
Crossover Assignment
There is one SNP
The main purpose of this four-week study is to examine diet-induced gene-nutrient interaction, with a focus on glucose, insulin, inflammation (CRP) and the plasma metabolome in individuals who have either the CC or the TT form of the rs7903146 single nucleotide polymorphism (SNP) (C/T) within the TCF7L2 gene.
Plasma glucose levels (mg/dl) will be measured in the fasting state during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP.
Fasting plasma insulin levels (pmol/l) will be measured in the fasting state during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP.
The response of plasma metabolites to the Mediterranean and low-fat diets diet) will be measured using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP.
Fasting plasma concentrations of VLDL in mg/dl, assessed by proton nuclear magnetic resonance (NMR) spectroscopy will be measured during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP.
Fasting plasma concentrations of LDL in mg/dl, assessed by proton nuclear magnetic resonance (NMR) spectroscopy will be measured during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP.
Fasting plasma concentrations of HDL in mg/dl, assessed by proton nuclear magnetic resonance (NMR) spectroscopy will be measured during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP.
Plasma C-reactive protein (mg/dl) will be measured in the fasting state during each one of the intervention phases (the Mediterranean and low-fat diets) in participants with the TT and CC genotypes at the TCF7L2 rs7903146 SNP.
The rs7903146 single nucleotide polymorphism (SNP) (C/T) within the TCF7L2 gene is the most replicated T2D-associated SNP.
For this purpose, a four-week study will be conducted to examine diet-induced gene-nutrient interaction, with a focus on glucose, insulin, and inflammation (CRP) in individuals who have either the CC or the TT form of the rs7903146 single nucleotide polymorphism (SNP) (C/T) within the TCF7L2 gene.